论文标题

视频DeBlurring的反复转移网络

Recurrence-in-Recurrence Networks for Video Deblurring

论文作者

Park, Joonkyu, Nah, Seungjun, Lee, Kyoung Mu

论文摘要

最先进的视频脱张方法通常采用复发性神经网络来对框架之间的时间依赖性进行建模。尽管隐藏的状态在将信息传递到下一帧中起关键作用,但突然的运动模糊往往会削弱邻居框架中的相关性。在本文中,我们提出了重复的反复网络架构,以应对短程内存的局限性。我们在RNN单元内采用其他复发单元。首先,我们采用内部旋转模块(IRM)来管理序列长期依赖性。 IRM学会了跟踪细胞内存,并提供互补的信息以查找去除框架。其次,我们采用基于注意力的时间混合策略来提取当地社区中所需的信息。副作用的时间混合(ATB)可以通过空间注意力减弱或扩大特征。我们广泛的实验结果和分析验证了IRM和ATB对各种RNN体系结构的有效性。

State-of-the-art video deblurring methods often adopt recurrent neural networks to model the temporal dependency between the frames. While the hidden states play key role in delivering information to the next frame, abrupt motion blur tend to weaken the relevance in the neighbor frames. In this paper, we propose recurrence-in-recurrence network architecture to cope with the limitations of short-ranged memory. We employ additional recurrent units inside the RNN cell. First, we employ inner-recurrence module (IRM) to manage the long-ranged dependency in a sequence. IRM learns to keep track of the cell memory and provides complementary information to find the deblurred frames. Second, we adopt an attention-based temporal blending strategy to extract the necessary part of the information in the local neighborhood. The adpative temporal blending (ATB) can either attenuate or amplify the features by the spatial attention. Our extensive experimental results and analysis validate the effectiveness of IRM and ATB on various RNN architectures.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源