论文标题

基于复杂值时间序列的太阳辐照度预测

Complex-Valued Time Series Based Solar Irradiance Forecast

论文作者

Voyant, Cyril, Lauret, Philippe, Notton, Gilles, Duchaud, Jean-Laurent, Garcia-Gutierrez, Luis, Faggianelli, Ghjuvan Antone

论文摘要

本文介绍了一种使用复杂值元素预测实时序列的新方法。在短期概率的全局太阳辐照度预测中给出了一个示例,并以测量为真实的一部分,并估计挥发性为虚构部分。通过在科西嘉岛(法国)收集的数据测试了一个简单的复杂自回旋模型。结果表明,即使这种方法易于设置并且需要很少的资源和数据,该模型生成的确定性和概率预测都与实验数据一致(考虑到所有研究的视野,均方根误差范围为0.196至0.325)。此外,它有时比经典模型(如高斯工艺,bootstrap方法论或更复杂的模型)具有更好的准确性。通过生成复杂值值时间序列可以构建的模型数量是很大的。实际上,通过使用外源性或序数变量以及计算的数量以及复杂(或多重复合)数字,许多研究和许多物理领域都可以从这种方法中受益,以及从其导致的许多模型中受益。

This paper describes a new way to predict real time series using complex-valued elements. An example is given in the case of the short-term probabilistic global solar irradiance forecasts with measurement as real part and an estimate of the volatility as imaginary part. A simple complex autoregressive model is tested with data collected in Corsica island (France). Results show that, even if this approach is simple to set up and requires very little resource and data, both deterministic and probabilistic forecasts generated by this model are in agreement with experimental data (root mean square error ranging from 0.196 to 0.325 considering all studied horizons). In addition, it exhibits sometimes a better accuracy than classical models like Gaussian process, bootstrap methodology or even more sophisticated model like quantile regression. The number of models that it is possible to build by generating complex-valued time series is substantial. Indeed, by using exogenous or ordinal variables and computed quantities coupled with complex (or multi-complex) numbers, many studies and many fields of physics could benefit from this methodology and from the many models that result from it.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源