论文标题
对称分解的纠缠熵和完整计数统计的通用热校正
Universal Thermal Corrections to Symmetry-Resolved Entanglement Entropy and Full Counting Statistics
论文作者
论文摘要
我们考虑对称分解的Rényi和纠缠熵,用于在非零温度下的圆圈上的二维形成条形理论。我们假设由系统的有限大小引起的非零质量间隙,然后计算出对低温扩张中单个电荷扇区的贡献的主要校正。除了质量间隙的尺寸和第一个激发态的退化之外,这些通用校正仅取决于主要场的四点相关函数。我们还获得了基态的完整计数统计数据的热校正,并定义了\ textIt {概率波动}函数。它缩放为$ e^{ - 2πδ_ψβ/l} $,其中$Δ_ψ$是最低重量状态的缩放维度。例如,我们明确评估了对对称分辨的纠缠熵和无旋转费米子的FC的热校正。
We consider the symmetry-resolved Rényi and entanglement entropies for two-dimensional conformal field theories on a circle at nonzero temperature. We assume a unique ground state with a nonzero mass gap induced by the system's finite size and then calculate the leading corrections to the contributions of individual charge sectors in a low-temperature expansion. Besides the size of the mass gap and the degeneracy of the first excited state, these universal corrections depend only on the four-point correlation function of the primary fields. We also obtain thermal corrections to the full counting statistics of the ground state and define the \textit{probability fluctuations} function. It scales as $e^{-2 πΔ_ψ β/L}$, where $Δ_ψ$ is the scaling dimension of the lowest weight states. As an example, we explicitly evaluate the thermal corrections to the symmetry-resolved entanglement entropy and FCS for the spinless fermions.