论文标题
在Terahertz波长的Kagome晶体中实现光子拓扑绝缘子
Realization of a photonic topological insulator in Kagome crystals at terahertz wavelengths
论文作者
论文摘要
拓扑系统本质上是对无序和连续扰动的稳健性,从而导致量子固体中电子的无耗散边缘传输,或者在以拓扑不变性为特征的经典波浪系统中的光子和声子反射指导。尽管做出了巨大的努力,但仍需要对在Terahertz频率运行的拓扑绝缘子中进行理论上预测的稳健的直接实验证明,以进一步研究,以肯定地阐明了拓扑保护所启用的独特性能。在这里,我们介绍了Kagome晶格,该晶格展示了一类新的受对称保护拓扑阶段,具有非常低的浆果曲率但非平凡的散装极化,并制造了一种提供山谷霍尔效应的光学拓扑绝缘子。理论分析表明可以获得四种类型的边缘状态。具有较高时间分辨率的THZ-TD的测量表明,沿着直拓扑边缘和Z形边缘传播的Terahertz波在0.440 THZ至0.457 THz域范围内几乎具有相同的高传输量。这些结果定量说明了由于结构的非平凡拓扑而导致的反向散射的抑制。 THZ-TDS的测量结果可产生振幅和相信息,与一般宽带红外,单波长连续波Thz测量和可见光谱相比,具有显着优势。它可以进一步探索边缘状态的有效折射率,群体速度和分散关系。我们的工作提供了对THZ波的传播和操纵的高级控制的可能性,并促进了应用程序,包括第六代(6G)无线通信,Terahertz集成电路以及用于内部和Interchip交流的互连。
Topological systems are inherently robust to disorder and continuous perturbations, resulting in dissipation-free edge transport of electrons in quantum solids, or reflectionless guiding of photons and phonons in classical wave systems characterized by topological invariants. Despite considerable efforts, direct experimental demonstration of theoretically predicted robust, lossless energy transport in topological insulators operating at terahertz frequencies is needed further investigations to shed affirmative light on the unique properties enabled by topological protection. Here, we introduce Kagome lattice that exhibits a new class of symmetry-protected topological phases with very low Berry curvature but nontrivial bulk polarization, and fabricate an optical topological insulator that provide the valley hall effect. Theoretical analysis show that four type edge states can be obtained. Measurements of THz-TDs with high time-resolution demonstrate that terahertz wave propagating along the straight topological edge and Z-shape edge with sharp turns have almost same high transmission in 0.440 THz to 0.457 THz domain range. Those results quantitatively illustrate the suppression of backscattering due to the non-trivial topology of the structure. The THz-TDs measurement yields amplitude and phase information, showing significant advantage compared to general broadband infrared, single wavelength continuous-wave THz measurements and visible spectroscopy. It allows further exploration of the effective refractive index, group velocity and dispersion relations of edge states. Our work offers possibilities for advanced control of the propagation and manipulation of THz waves, and facilitates the applications including sixth-generation (6G) wireless communication, terahertz integrated circuits, and interconnects for intrachip and interchip communication.