论文标题
本地步骤在本地SGD中的作用
The Role of Local Steps in Local SGD
论文作者
论文摘要
我们考虑了分布式随机优化问题,其中$ n $代理想要最大程度地减少代理局部函数总和给出的全局函数,并专注于当代理的局部函数在非i.i.i.d上定义时,专注于异质设置。数据集。我们研究本地SGD方法,在该方法中,代理执行许多局部随机梯度步骤,并偶尔与中央节点进行通信以改善其本地优化任务。我们分析了本地步骤对局部SGD的收敛速率和通信复杂性的影响。特别是,我们允许在$ i $ th的通信回合($ h_i $)期间允许在所有通信回合中固定数量的本地步骤。我们的主要贡献是将本地SGD的收敛速率表征为$ \ {h_i \} _ {i = 1}^r $在强烈凸,convex和nonconvex local功能下的函数,其中$ r $是通信总数。基于此特征,我们在序列$ \ {h_i \} _ {i = 1}^r $上提供足够的条件,使得本地SGD可以相对于工人数量实现线性加速。此外,我们提出了一种新的沟通策略,将本地步骤提高了,而优于现有的沟通策略,可以强烈传达本地功能。另一方面,对于凸和非凸局局功能,我们认为固定的本地步骤是本地SGD的最佳通信策略,并恢复了最新的收敛速率结果。最后,我们通过广泛的数值实验证明我们的理论结果是合理的。
We consider the distributed stochastic optimization problem where $n$ agents want to minimize a global function given by the sum of agents' local functions, and focus on the heterogeneous setting when agents' local functions are defined over non-i.i.d. data sets. We study the Local SGD method, where agents perform a number of local stochastic gradient steps and occasionally communicate with a central node to improve their local optimization tasks. We analyze the effect of local steps on the convergence rate and the communication complexity of Local SGD. In particular, instead of assuming a fixed number of local steps across all communication rounds, we allow the number of local steps during the $i$-th communication round, $H_i$, to be different and arbitrary numbers. Our main contribution is to characterize the convergence rate of Local SGD as a function of $\{H_i\}_{i=1}^R$ under various settings of strongly convex, convex, and nonconvex local functions, where $R$ is the total number of communication rounds. Based on this characterization, we provide sufficient conditions on the sequence $\{H_i\}_{i=1}^R$ such that Local SGD can achieve linear speed-up with respect to the number of workers. Furthermore, we propose a new communication strategy with increasing local steps superior to existing communication strategies for strongly convex local functions. On the other hand, for convex and nonconvex local functions, we argue that fixed local steps are the best communication strategy for Local SGD and recover state-of-the-art convergence rate results. Finally, we justify our theoretical results through extensive numerical experiments.