论文标题

量子化学的介电连续方法

Dielectric continuum methods for quantum chemistry

论文作者

Herbert, John M.

论文摘要

这篇综述描述了基于连续静电学的隐式溶剂化模型的理论和实施。在量子化学中,这种形式主义有时与可极化连续模型的同义词,这是一种特定的边界元素方法,用于由泊松或泊松玻璃到泊松方程定义的问题,但该绰号掩盖了可用方法的多样性。这项工作回顾了当前的最新技术,重点是理论和方法而不是应用。描述了连续静电的基础知识,包括激发或溶质电离后的非平衡极化响应。还描述了必须在模型中包括的非电压相互作用以获得准确的溶剂化能。讨论了用于实现方程的数值技术,包括可用于经典或混合量子/经典生物分子静电计算的线性缩放算法。简要描述了可以描述界面溶剂化的各向异性模型。

This review describes the theory and implementation of implicit solvation models based on continuum electrostatics. Within quantum chemistry this formalism is sometimes synonymous with the polarizable continuum model, a particular boundary-element approach to the problem defined by the Poisson or Poisson-Boltzmann equation, but that moniker belies the diversity of available methods. This work reviews the current state-of-the art, with emphasis on theory and methods rather than applications. The basics of continuum electrostatics are described, including the nonequilibrium polarization response upon excitation or ionization of the solute. Nonelectrostatic interactions, which must be included in the model in order to obtain accurate solvation energies, are described as well. Numerical techniques for implementing the equations are discussed, including linear-scaling algorithms that can be used in classical or mixed quantum/classical biomolecular electrostatics calculations. Anisotropic models that can describe interfacial solvation are briefly described.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源