论文标题

使用Tropomi卫星数据对单个船只的NO2羽流进行监督分割

Supervised segmentation of NO2 plumes from individual ships using TROPOMI satellite data

论文作者

Kurchaba, Solomiia, van Vliet, Jasper, Verbeek, Fons J., Meulman, Jacqueline J., Veenman, Cor J.

论文摘要

航运业是$ \ text {no} _ \ text {x} $的最强人为发射器之一 - 对人类健康和环境有害的物质。该行业的快速增长会导致社会压力控制船只产生的排放水平。当前用于船舶排放监控的所有方法都是昂贵的,需要靠近船,这使得不可能使全球和连续的排放监视。一种有希望的方法是遥感的应用。研究表明,可以使用哥白尼前哨前体(Tropomi/s5p)上的对流层监视仪器(Tropomi/s5p)上的对流监测仪器(Troposernicus Monitoring仪器)在视觉上区分单个船只的$ \ text {no} _ \ text {2} $李子。为了部署基于遥感的全局发射监视系统,需要一个自动化的过程,用于估算$ \ text {no} _ \ text {2} $从单个船舶发射。可用数据的极低信噪比以及没有地面真相的缺乏使任务变得非常具有挑战性。在这里,我们提出了一种方法,用于使用tropomi/s5p数据上有监督的机器学习,$ \ text {no} _ \ text {no} _ \ text {2} $李子。我们表明,与以前的研究中使用的方法相比,提出的方法导致平均精度得分的平均精度得分增加了20 \%,并且与理论得出的船舶发射代理的高相关性高0.834。这项工作是朝着开发自动化程序的至关重要的一步,用于使用遥感数据进行全球船舶排放监控。

The shipping industry is one of the strongest anthropogenic emitters of $\text{NO}_\text{x}$ -- substance harmful both to human health and the environment. The rapid growth of the industry causes societal pressure on controlling the emission levels produced by ships. All the methods currently used for ship emission monitoring are costly and require proximity to a ship, which makes global and continuous emission monitoring impossible. A promising approach is the application of remote sensing. Studies showed that some of the $\text{NO}_\text{2}$ plumes from individual ships can visually be distinguished using the TROPOspheric Monitoring Instrument on board the Copernicus Sentinel 5 Precursor (TROPOMI/S5P). To deploy a remote sensing-based global emission monitoring system, an automated procedure for the estimation of $\text{NO}_\text{2}$ emissions from individual ships is needed. The extremely low signal-to-noise ratio of the available data as well as the absence of ground truth makes the task very challenging. Here, we present a methodology for the automated segmentation of $\text{NO}_\text{2}$ plumes produced by seagoing ships using supervised machine learning on TROPOMI/S5P data. We show that the proposed approach leads to a more than a 20\% increase in the average precision score in comparison to the methods used in previous studies and results in a high correlation of 0.834 with the theoretically derived ship emission proxy. This work is a crucial step toward the development of an automated procedure for global ship emission monitoring using remote sensing data.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源