论文标题

建模具有复杂光谱结构的非平滑信号

Modelling Non-Smooth Signals with Complex Spectral Structure

论文作者

Bruinsma, Wessel P., Tegnér, Martin, Turner, Richard E.

论文摘要

高斯工艺卷积模型(GPCM; Tobar等,2015a)是具有复杂频谱结构的信号的模型。 GPCM的一个重要局限性是它假定迅速衰减的频谱:它只能对光滑信号进行建模。此外,GPCM的推断需要(1)平均田间假设,导致校准不确定性不确定性,以及(2)大量协方差矩阵的繁琐变分优化。我们重新设计了GPCM模型,以诱导对光滑度的宽松假设诱导更丰富的分布:因果高斯工艺卷积模型(CGPCM)引入了GPCM中的因果关系假设,并且可以将高斯过程卷积模型(RGPCM)解释为贝耶斯的非骨化过程。我们还提出了一种更有效的变分推理方案,超越了平均场假设:我们设计了一个直接从最佳变分溶液中取样的吉布斯采样器,完全避免了任何变分优化。在合成和现实世界数据的实验中验证了GPCM的建议变异,显示出令人鼓舞的结果。

The Gaussian Process Convolution Model (GPCM; Tobar et al., 2015a) is a model for signals with complex spectral structure. A significant limitation of the GPCM is that it assumes a rapidly decaying spectrum: it can only model smooth signals. Moreover, inference in the GPCM currently requires (1) a mean-field assumption, resulting in poorly calibrated uncertainties, and (2) a tedious variational optimisation of large covariance matrices. We redesign the GPCM model to induce a richer distribution over the spectrum with relaxed assumptions about smoothness: the Causal Gaussian Process Convolution Model (CGPCM) introduces a causality assumption into the GPCM, and the Rough Gaussian Process Convolution Model (RGPCM) can be interpreted as a Bayesian nonparametric generalisation of the fractional Ornstein-Uhlenbeck process. We also propose a more effective variational inference scheme, going beyond the mean-field assumption: we design a Gibbs sampler which directly samples from the optimal variational solution, circumventing any variational optimisation entirely. The proposed variations of the GPCM are validated in experiments on synthetic and real-world data, showing promising results.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源