论文标题

用于精密对撞机物理的多个多组载体以外的功能

Functions Beyond Multiple Polylogarithms for Precision Collider Physics

论文作者

Bourjaily, Jacob L., Broedel, Johannes, Chaubey, Ekta, Duhr, Claude, Frellesvig, Hjalte, Hidding, Martijn, Marzucca, Robin, McLeod, Andrew J., Spradlin, Marcus, Tancredi, Lorenzo, Vergu, Cristian, Volk, Matthias, Volovich, Anastasia, von Hippel, Matt, Weinzierl, Stefan, Wilhelm, Matthias, Zhang, Chi

论文摘要

Feynman图构成了对撞机实验进行精确预测的重要成分之一。然而,尽管最简单的Feynman图可以通过多种多种聚类(其特殊功能的特性得到充分理解)来评估,但更复杂的图通常涉及复杂代数歧管上的积分。此类图已经在NNLO中促进了电子的自我能源,$ t \ bar {t} $生产,$γγ$生产和希格斯衰减,并以最大超对称性的阳性理论的平面极限出现在两个循环中。这使得对这些更复杂的现象学和概念意义的积分类型的研究。 在这份白皮书对雪人社区计划练习的贡献中,我们概述了Feynman图的研究状态,该研究涉及多个多种聚集体以外的特殊功能,并重点介绍了许多研究方向,这些研究方向构成了未来研究的基本途径。

Feynman diagrams constitute one of the essential ingredients for making precision predictions for collider experiments. Yet, while the simplest Feynman diagrams can be evaluated in terms of multiple polylogarithms -- whose properties as special functions are well understood -- more complex diagrams often involve integrals over complicated algebraic manifolds. Such diagrams already contribute at NNLO to the self-energy of the electron, $t \bar{t}$ production, $γγ$ production, and Higgs decay, and appear at two loops in the planar limit of maximally supersymmetric Yang-Mills theory. This makes the study of these more complicated types of integrals of phenomenological as well as conceptual importance. In this white paper contribution to the Snowmass community planning exercise, we provide an overview of the state of research on Feynman diagrams that involve special functions beyond multiple polylogarithms, and highlight a number of research directions that constitute essential avenues for future investigation.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源