论文标题
量子链中有效的非本地均衡依赖性耦合
Effective non-local parity-dependent couplings in qubit chains
论文作者
论文摘要
为了有效地实施量子算法,生成多体纠缠的实用方法是基本要求。具体而言,立即耦合多个量子对可能是有利的,并且可能导致多头操作可用于构建硬件销售算法。在这里,我们在链条上同时利用Qubits的同时耦合,并设计一组适合广泛应用的非本地均等量子操作。由此产生的有效远程耦合直接实现了Jordan-Wigner费米子的可参数式小跑步器,可用于模拟量子动力学,有效的状态生成,在变化量子本质体中的有效状态生成,误差 - 检索方案的奇偶校验测量以及有效的多Qubit Gates的产生。此外,我们在超导量子电路体系结构中介绍了栅极操作的数值模拟,该量子架构显示现实的实验参数的高门保真度为$> 99.9 \%$。
For the efficient implementation of quantum algorithms, practical ways to generate many-body entanglement are a basic requirement. Specifically, coupling multiple qubit pairs at once can be advantageous and can lead to multi-qubit operations useful in the construction of hardware-tailored algorithms. Here we harness the simultaneous coupling of qubits on a chain and engineer a set of non-local parity-dependent quantum operations suitable for a wide range of applications. The resulting effective long-range couplings directly implement a parametrizable Trotter-step for Jordan-Wigner fermions and can be used for simulations of quantum dynamics, efficient state generation in variational quantum eigensolvers, parity measurements for error-correction schemes, and the generation of efficient multi-qubit gates. Moreover, we present numerical simulations of the gate operation in a superconducting quantum circuit architecture, which show a high gate fidelity of $>99.9\%$ for realistic experimental parameters.