论文标题
带有视觉轨道的单线光谱二进制中的贝叶斯推断
Bayesian inference in single-line spectroscopic binaries with a visual orbit
论文作者
论文摘要
我们提出了一种基于No-U-Turn Sampler Markov链蒙特卡洛算法的天文学数据,介绍了估算单线光谱二进制轨道参数的贝叶斯推理方法。我们的方法旨在在存在部分和异质观测的情况下对轨道参数的关节后分布进行精确有效的估计。该方案使我们能够直接以三角观视的形式直接合并有关该系统的先前信息,并估计主要组件从其光谱类型中的质量估算 - 以限制解决方案的范围,并概述通常无法确定的轨道参数(例如,由于缺乏观察值或重大测量值,因此无法确定单个组件质量)。通过分析研究良好的双线光谱二进制二进制的后验分布来测试我们的方法,该分布通过省略次级对象的径向速度数据来处理为单线二进制文件。我们的结果表明,可以使用我们的方法估算系统的质量比小于10%的不确定性。作为概念的证明,提出的方法应用于十二个单线光谱二进制文件,并带有缺乏关节星形光谱溶液的星体数据,我们为此提供了完整的轨道元素。我们的基于样本的方法使我们还可以研究相应观察空间中不同后验分布的影响。这种新颖的分析可以更好地理解不同信息来源对轨道和径向速度曲线的形状和不确定性的影响。
We present a Bayesian inference methodology for the estimation of orbital parameters on single-line spectroscopic binaries with astrometric data, based on the No-U-Turn sampler Markov chain Monte Carlo algorithm. Our approach is designed to provide a precise and efficient estimation of the joint posterior distribution of the orbital parameters in the presence of partial and heterogeneous observations. This scheme allows us to directly incorporate prior information about the system - in the form of a trigonometric parallax, and an estimation of the mass of the primary component from its spectral type - to constrain the range of solutions, and to estimate orbital parameters that cannot be usually determined (e.g. the individual component masses), due to the lack of observations or imprecise measurements. Our methodology is tested by analyzing the posterior distributions of well-studied double-line spectroscopic binaries treated as single-line binaries by omitting the radial velocity data of the secondary object. Our results show that the system's mass ratio can be estimated with an uncertainty smaller than 10% using our approach. As a proof of concept, the proposed methodology is applied to twelve single-line spectroscopic binaries with astrometric data that lacked a joint astrometric-spectroscopic solution, for which we provide full orbital elements. Our sample-based methodology allows us also to study the impact of different posterior distributions in the corresponding observations space. This novel analysis provides a better understanding of the effect of the different sources of information on the shape and uncertainty of the orbit and radial velocity curve.