论文标题
对张量网络的局部优化的局部优化
Locality optimization for parent Hamiltonians of Tensor Networks
论文作者
论文摘要
张量网络状态构成了强大相关阶段的分析和数值研究的强大框架。对他们的分析效用至关重要的是,它们是相关的哈密顿人的确切基础状态,在这里,规范的证明技术可以保证受控的地面空间结构。然而,尽管这些哈密顿人是通过建筑物的本地人,但已知的技术通常会产生复杂的哈密顿量,这些汉密尔顿人在大量旋转上起作用。在本文中,我们提出了一种系统地简化父母汉密尔顿人的算法,将其分解为任何基本相互作用项的基础。潜在的优化问题是一个半决赛程序,因此可以有效地找到最佳解决方案。我们的方法利用了汉密尔顿家长汉密尔顿家族的建设(当地术语的激发谱)的一定程度的自由度,以优化,以获得最佳的近似值。我们将方法基于AKLT模型和感谢您的Code模型,在该模型中我们表明,可以分解为已知的最佳2体和4体术语的规范父母汉密尔顿人(分别在3或4和12个地点上作用)。然后,我们将方法应用于Kagome晶格上的范式共鸣价键(RVB)模型。在这里,以前最简单的父母哈密顿人在一个kagome恒星上的所有12旋旋转上作用。借助我们的优化算法,我们获得了一个非常简单的哈密顿量:我们发现RVB模型是父母哈密顿族人的确切基态,其术语最多是四个Heisenberg相互作用的产物,并且可以进一步限制其范围,从而对先前已知的12-Body Hamiltonian提供了重大改进。
Tensor Network states form a powerful framework for both the analytical and numerical study of strongly correlated phases. Vital to their analytical utility is that they appear as the exact ground states of associated parent Hamiltonians, where canonical proof techniques guarantee a controlled ground space structure. Yet, while those Hamiltonians are local by construction, the known techniques often yield complex Hamiltonians which act on a rather large number of spins. In this paper, we present an algorithm to systematically simplify parent Hamiltonians, breaking them down into any given basis of elementary interaction terms. The underlying optimization problem is a semidefinite program, and thus the optimal solution can be found efficiently. Our method exploits a degree of freedom in the construction of parent Hamiltonians -- the excitation spectrum of the local terms -- over which it optimizes such as to obtain the best possible approximation. We benchmark our method on the AKLT model and the Toric Code model, where we show that the canonical parent Hamiltonians (acting on 3 or 4 and 12 sites, respectively) can be broken down to the known optimal 2-body and 4-body terms. We then apply our method to the paradigmatic Resonating Valence Bond (RVB) model on the kagome lattice. Here, the simplest previously known parent Hamiltonian acts on all the 12 spins on one kagome star. With our optimization algorithm, we obtain a vastly simpler Hamiltonian: We find that the RVB model is the exact ground state of a parent Hamiltonian whose terms are all products of at most four Heisenberg interactions, and whose range can be further constrained, providing a major improvement over the previously known 12-body Hamiltonian.