论文标题
在1D中观察动力学拓扑
Observation of dynamical topology in 1D
论文作者
论文摘要
晶格中的非平凡拓扑以不变性的特征 - 例如一个尺寸(1D)晶格的Zak阶段 - 源自覆盖布里鲁因区域的波函数。我们使用Ultracold $^{87} $ rb意识到了1D双分米 - 米尔(RM)晶格,并专注于具有各种手性,时间反向和粒子孔对称性组合的晶格配置。我们在配置之间取消了量子状态断层扫描的形式,该形式是通过脱节调谐晶格参数来启用的,直接遵循Zak阶段的时间演变以及手性绕组数。 Zak阶段不断发展。但是,当手性对称性瞬时出现在平衡系统中时,手性绕组数的定义很好,并且可以采用不同的整数值。当在两个配置之间淬灭所有三个对称的配置时,Zak阶段是独立的。我们证实了[M.的对比预测McGinley和N. R.Cooper,PRL 121 090401(2018)],手性对称性定期恢复,此时绕组数量的变化$ \ pm 2 $,产生了汉密尔顿本地RM中不存在的值。
Nontrivial topology in lattices is characterized by invariants--such as the Zak phase for one dimensional (1D) lattices--derived from wave functions covering the Brillouin zone. We realized the 1D bipartite Rice-Mele (RM) lattice using ultracold $^{87}$Rb and focus on lattice configurations possessing various combinations of chiral, time-reversal and particle-hole symmetries. We quenched between configurations and used a form of quantum state tomography, enabled by diabatically tuning lattice parameters, to directly follow the time evolution of the Zak phase as well as a chiral winding number. The Zak phase evolves continuously; however, when chiral symmetry transiently appears in the out-of-equilibrium system, the chiral winding number is well defined and can take on different integer values. When quenching between two configurations obeying all three symmetries the Zak phase is time independent; we confirm the contrasting prediction of [M. McGinley and N. R.Cooper, PRL 121 090401 (2018)] that chiral symmetry is periodically restored, at which times the winding number changes by $\pm 2$, yielding values that are not present in the native RM Hamiltonian.