论文标题

部分可观测时空混沌系统的无模型预测

Quantifying Energetic and Entropic Pathways in Molecular Systems

论文作者

Beyerle, E. R., Mehdi, Shams, Tiwary, Pratyush

论文摘要

在检查在非零温度下发生的动态时,必须在描述激活的屏障越过事件时考虑能量和熵。此外,需要构建良好的反应坐标来描述不同的亚稳态状态及其之间的过渡机制。在这里,我们使用一种基于物理的机器学习方法,称为状态预测信息瓶颈(SPIB),以找到三种不同复杂性系统的非线性反应坐标。 SPIB能够正确预测分析扁平能双孔系统的熵瓶颈,并确定分析四孔系统的熵和能量为主的途径。最后,为了通过脂质双层模拟苯甲酸渗透,SPIB能够发现渗透过程的熵和能量障碍。鉴于这些结果,我们确定SPIB是一种合理且可靠的方法,用于在物理系统中找到重要的熵和能量/焓障碍,然后可以将其用于增强对不同活化机制的理解和采样。

When examining dynamics occurring at non-zero temperatures, both energy and entropy must be taken into account while describing activated barrier crossing events. Furthermore, good reaction coordinates need to be constructed to describe different metastable states and the transition mechanisms between them. Here we use a physics-based machine learning method called the State Predictive Information Bottleneck (SPIB) to find non-linear reaction coordinates for three systems of varying complexity. The SPIB is able to predict correctly an entropic bottleneck for an analytical flat-energy double-well system and identify the entropy- and energy-dominated pathways for an analytical four-well system. Finally, for a simulation of benzoic acid permeation through a lipid bilayer, SPIB is able to discover the entropic and energetic barriers to the permeation process. Given these results, we thus establish that SPIB is a reasonable and robust method for finding the important entropy and energy/enthalpy barriers in physical systems, which can then be used for enhanced understanding and sampling of different activated mechanisms.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源