论文标题
Banach代数中的G-Drazin的不可逆转性
The g-Drazin invertibility in a Banach algebra
论文作者
论文摘要
我们介绍了抗三角矩阵$ \的必要条件( \ begin {array} {cc} A&B 1&0 \ end {array} \ right)$ banach代数的$ g-drazin倒数。获得了G-Drazin逆的新添加剂结果。然后,我们将结果应用于$ 2 \ times 2 $运算符矩阵,并概括了许多已知结果,例如,〜\ cit [theorem 2.2] {d},〜\ cite [theorem 2.1] {yl}和\ cite [theorem 4.1] {y}。
We present necessary and sufficient conditions under which the anti-triangular matrix $\left( \begin{array}{cc} a&b 1&0 \end{array} \right)$ over a Banach algebra has g-Drazin inverse. New additive results for g-Drazin inverse are obtained. Then we apply our results to $2\times 2$ operator matrices and generalize many known results, e.g.,~\cite[Theorem 2.2]{D}, ~\cite[Theorem 2.1]{YL} and \cite[Theorem 4.1]{Y}.