论文标题
部门:定期时间序列的深度扩展学习预测
DEPTS: Deep Expansion Learning for Periodic Time Series Forecasting
论文作者
论文摘要
定期时间序列(PTS)的预测在各种行业中起着至关重要的作用,以培养关键任务,例如预警,预先计划,资源调度等。但是,PTS的复杂依赖性信号对其固有期刊的复杂依赖性以及各种周期的复杂组成的构成,可以阻碍PTS的性能。在本文中,我们为PTS预测介绍了一个深厚的扩展学习框架,部门。部门以一个脱钩的配方开始,将周期状态作为隐藏变量引入,这激发了我们制作两个专用模块,以应对上述两个挑战。首先,我们在残留学习之上开发了一个扩展模块,以对这些复杂依赖性进行一层扩展。其次,我们引入了一个具有参数化的周期函数的周期性模块,该功能具有足够的捕获多元化周期的能力。此外,我们的两个自定义模块还具有某些可解释的功能,例如将预测归因于本地动量或全球周期性,并表征某些核心周期性属性,例如振幅和频率。关于合成数据和现实世界数据的广泛实验证明了部门对处理PT的有效性。在大多数情况下,部门比最佳基线取得了重大改进。具体而言,在几种情况下,误差降低甚至可以达到20%。最后,所有代码均可公开使用。
Periodic time series (PTS) forecasting plays a crucial role in a variety of industries to foster critical tasks, such as early warning, pre-planning, resource scheduling, etc. However, the complicated dependencies of the PTS signal on its inherent periodicity as well as the sophisticated composition of various periods hinder the performance of PTS forecasting. In this paper, we introduce a deep expansion learning framework, DEPTS, for PTS forecasting. DEPTS starts with a decoupled formulation by introducing the periodic state as a hidden variable, which stimulates us to make two dedicated modules to tackle the aforementioned two challenges. First, we develop an expansion module on top of residual learning to perform a layer-by-layer expansion of those complicated dependencies. Second, we introduce a periodicity module with a parameterized periodic function that holds sufficient capacity to capture diversified periods. Moreover, our two customized modules also have certain interpretable capabilities, such as attributing the forecasts to either local momenta or global periodicity and characterizing certain core periodic properties, e.g., amplitudes and frequencies. Extensive experiments on both synthetic data and real-world data demonstrate the effectiveness of DEPTS on handling PTS. In most cases, DEPTS achieves significant improvements over the best baseline. Specifically, the error reduction can even reach up to 20% for a few cases. Finally, all codes are publicly available.