论文标题
边界点,最小$ l^2 $积分和凹面财产ii:在弱伪vavexkähler歧管上
Boundary points, minimal $L^2$ integrals and concavity property II: on weakly pseudoconvex Kähler manifolds
论文作者
论文摘要
在本文中,我们考虑了在弱的pseudoconvexKähler歧管上的质量式功能的最小$ l^2 $积分,其中lebesgue可衡量的增益与超级级别的边界点相关的可衡量收益,并建立了最小$ l^2 $ intempals的凹入属性。作为应用程序,我们提出了凹面变性为线性的必要条件,即与模块的内部点相关的凹陷属性,与模块相关的最佳支撑功能,模块的强大开放性和扭曲版本,是模块强大开放性属性的有效性。
In this article, we consider minimal $L^2$ integrals on the sublevel sets of plurisubharmonic functions on weakly pseudoconvex Kähler manifolds with Lebesgue measurable gain related to modules at boundary points of the sublevel sets, and establish a concavity property of the minimal $L^2$ integrals. As applications, we present a necessary condition for the concavity degenerating to linearity, a concavity property related to modules at inner points of the sublevel sets, an optimal support function related to the modules, a strong openness property of the modules and a twisted version, an effectiveness result of the strong openness property of the modules.