论文标题

具有序数标签的医学图像分类的元序序回归森林

Meta Ordinal Regression Forest for Medical Image Classification with Ordinal Labels

论文作者

Lei, Yiming, Zhu, Haiping, Zhang, Junping, Shan, Hongming

论文摘要

深度卷积神经网络(CNN)增强了医学图像分类的性能,这些卷积神经网络通常受到跨凝结术(CE)损失的训练。但是,当标签呈现自然界中的固有序数特性时,例如从良性肿瘤到恶性肿瘤的发展,CE损失无法考虑到此类序数信息以进行更好的概括。为了通过序数信息改善模型的概括,我们提出了一种与序数标签进行医学图像分类的新型元序列回归森林(MORF)方法,该方法通过在元学习框架中卷积神经网络和微分森林的结合来了解序数关系。提出的MORF的优点来自以下两个组成部分:良好的加权网(TWW-NET)和分组的特征选择(GFS)模块。首先,TWW-NET用特定的重量分配了森林中的每棵树,该重量是根据相应树的分类损失映射的。因此,所有树木的重量都不同,这有助于减轻树木的预测差异。其次,GFS模块启用了动态森林,而不是先前使用的固定森林,从而允许随机特征扰动。在训练过程中,我们通过计算Hessian矩阵,在元学习框架中优化了CNN主链和TWW-NET的参数。具有序数标签的两个医学图像分类数据集的实验结果,即LIDC-IDRI和乳房超声数据集,证明了我们MORF方法的卓越性能,而不是现有的最新方法。

The performance of medical image classification has been enhanced by deep convolutional neural networks (CNNs), which are typically trained with cross-entropy (CE) loss. However, when the label presents an intrinsic ordinal property in nature, e.g., the development from benign to malignant tumor, CE loss cannot take into account such ordinal information to allow for better generalization. To improve model generalization with ordinal information, we propose a novel meta ordinal regression forest (MORF) method for medical image classification with ordinal labels, which learns the ordinal relationship through the combination of convolutional neural network and differential forest in a meta-learning framework. The merits of the proposed MORF come from the following two components: a tree-wise weighting net (TWW-Net) and a grouped feature selection (GFS) module. First, the TWW-Net assigns each tree in the forest with a specific weight that is mapped from the classification loss of the corresponding tree. Hence, all the trees possess varying weights, which is helpful for alleviating the tree-wise prediction variance. Second, the GFS module enables a dynamic forest rather than a fixed one that was previously used, allowing for random feature perturbation. During training, we alternatively optimize the parameters of the CNN backbone and TWW-Net in the meta-learning framework through calculating the Hessian matrix. Experimental results on two medical image classification datasets with ordinal labels, i.e., LIDC-IDRI and Breast Ultrasound Dataset, demonstrate the superior performances of our MORF method over existing state-of-the-art methods.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源