论文标题
部分可观测时空混沌系统的无模型预测
Multi-Unit Diffusion Auctions with Intermediaries
论文作者
论文摘要
储层计算是预测湍流的有力工具,其简单的架构具有处理大型系统的计算效率。然而,其实现通常需要完整的状态向量测量和系统非线性知识。我们使用非线性投影函数将系统测量扩展到高维空间,然后将其输入到储层中以获得预测。我们展示了这种储层计算网络在时空混沌系统上的应用,该系统模拟了湍流的若干特征。我们表明,使用径向基函数作为非线性投影器,即使只有部分观测并且不知道控制方程,也能稳健地捕捉复杂的系统非线性。最后,我们表明,当测量稀疏、不完整且带有噪声,甚至控制方程变得不准确时,我们的网络仍然可以产生相当准确的预测,从而为实际湍流系统的无模型预测铺平了道路。
This paper studies multi-unit auctions powered by intermediaries, where each intermediary owns a private set of unit-demand buyers and all intermediaries are networked with each other. Our goal is to incentivize the intermediaries to diffuse the auction information to individuals they can reach, including their private buyers and neighboring intermediaries, so that more potential buyers are able to participate in the auction. To this end, we build a diffusion-based auction framework which incorporates the strategic interaction of intermediaries. It is showed that the classic Vickrey-Clarke-Groves (VCG) mechanism within the framework can achieve the maximum social welfare, but it may decrease the seller's revenue or even lead to a deficit. To overcome the revenue issue, we propose a novel auction, called critical neighborhood auction, which not only maximizes the social welfare, but also improves the seller's revenue comparing to the VCG mechanism with/without intermediaries.