论文标题
端到端P300 BCI使用贝叶斯的Riemannian概率积累
End-to-end P300 BCI using Bayesian accumulation of Riemannian probabilities
论文作者
论文摘要
储层计算是预测湍流的有力工具,其简单的架构具有处理大型系统的计算效率。然而,其实现通常需要完整的状态向量测量和系统非线性知识。我们使用非线性投影函数将系统测量扩展到高维空间,然后将其输入到储层中以获得预测。我们展示了这种储层计算网络在时空混沌系统上的应用,该系统模拟了湍流的若干特征。我们表明,使用径向基函数作为非线性投影器,即使只有部分观测并且不知道控制方程,也能稳健地捕捉复杂的系统非线性。最后,我们表明,当测量稀疏、不完整且带有噪声,甚至控制方程变得不准确时,我们的网络仍然可以产生相当准确的预测,从而为实际湍流系统的无模型预测铺平了道路。
In brain-computer interfaces (BCI), most of the approaches based on event-related potential (ERP) focus on the detection of P300, aiming for single trial classification for a speller task. While this is an important objective, existing P300 BCI still require several repetitions to achieve a correct classification accuracy. Signal processing and machine learning advances in P300 BCI mostly revolve around the P300 detection part, leaving the character classification out of the scope. To reduce the number of repetitions while maintaining a good character classification, it is critical to embrace the full classification problem. We introduce an end-to-end pipeline, starting from feature extraction, and is composed of an ERP-level classification using probabilistic Riemannian MDM which feeds a character-level classification using Bayesian accumulation of confidence across trials. Whereas existing approaches only increase the confidence of a character when it is flashed, our new pipeline, called Bayesian accumulation of Riemannian probabilities (ASAP), update the confidence of each character after each flash. We provide the proper derivation and theoretical reformulation of this Bayesian approach for a seamless processing of information from signal to BCI characters. We demonstrate that our approach performs significantly better than standard methods on public P300 datasets.