论文标题

在弦图上的交换矩阵上

On exchange matrices from string diagrams

论文作者

Cao, Peigen

论文摘要

储层计算是预测湍流的有力工具,其简单的架构具有处理大型系统的计算效率。然而,其实现通常需要完整的状态向量测量和系统非线性知识。我们使用非线性投影函数将系统测量扩展到高维空间,然后将其输入到储层中以获得预测。我们展示了这种储层计算网络在时空混沌系统上的应用,该系统模拟了湍流的若干特征。我们表明,使用径向基函数作为非线性投影器,即使只有部分观测并且不知道控制方程,也能稳健地捕捉复杂的系统非线性。最后,我们表明,当测量稀疏、不完整且带有噪声,甚至控制方程变得不准确时,我们的网络仍然可以产生相当准确的预测,从而为实际湍流系统的无模型预测铺平了道路。

Inspired by Fock-Goncharov's amalgamation procedure \cite{Fock-Goncharov-2006}, Shen-Weng introduced string diagrams in \cite{Shen-Weng-2021}, which are very useful to describe many interesting skew-symmetrizable matrices closely related with Lie theory. In this paper, we prove that the skew-symmetrizable matrices from string diagrams are in the smallest class $\mathcal P^\prime$ of skew-symmetrizable matrices containing the $1\times 1$ zero matrix and closed under mutations and source-sink extensions. This result applies to the exchange matrices of cluster algebras from double Bruhat cells, unipotent cells, double Bott-Samelson cells and so on. Our main result can be used to explain why many skew-symmetrizable matrices from Lie theory have reddening sequences. It can be also used to prove some interesting results regarding non-degenerate potentials on many quivers from Lie theory.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源