论文标题

高度不可靠的节点上的具有成本效益的黑水筏

Cost-effective BlackWater Raft on Highly Unreliable Nodes at Scale Out

论文作者

Xu, Zichen, Du, Yunxiao, Zhang, Kanqi, Huang, Jiacheng, Liu, Jie, Gao, Jingxiong, Stewart, Christopher

论文摘要

RAFT算法在云中的数据复制品之间保持强大的一致性。该算法将节点划分为领导者和关注者,以满足跨越地理多样性网站的读/写请求。随着工作量的增加,RAFT应以成比例提供扩展性能。但是,传统的扩大技术在木筏上遇到瓶颈,当配置站点耗尽当地资源时,绩效损失将成倍增长。为了在筏中提供可伸缩性,本文提出了一种具有成本效益的机制,用于在木筏中弹性自动缩放,称为黑水生革或BW-Raft。 BW-RAFT通过以下抽象扩展了原始筏:(1)秘书节点,这些节点从领导者那里接管了昂贵的日志同步操作,从而放松了锁的性能约束。 (2)仅处理读取的大量低成本观察者节点,改善了典型数据密集型服务的吞吐量。这些抽象是无状态的,可以在不可靠而廉价的现场实例上进行弹性扩展。从理论上讲,我们证明了BW-RAFT可以在扩展时保持筏的强度保证,与原始筏相比,节点数量增加了50倍。我们已经在钥匙值服务上原型BW-RAFT进行了原型,并用Amazon EC2和Alibaba Cloud上的许多最新作品进行了评估。我们的结果表明,在相同的预算中,BW-Raft的资源足迹增量比多桶小5-7倍,比原始筏好2倍。使用点实例,与多生产率相比,BW-RAFT可以将成本降低84.5%。在现实世界的实验中,BW-RAFT将95级SLO的好评提高了9.4倍,从而可以替代以强劲的一致性来扩展服务。

The Raft algorithm maintains strong consistency across data replicas in Cloud. This algorithm divides nodes into leaders and followers, to satisfy read/write requests spanning geo-diverse sites. With the increase of workload, Raft shall provide scale-out performance in proportion. However, traditional scale-out techniques encounter bottlenecks in Raft, and when the provisioned sites exhaust local resources, the performance loss will grow exponentially. To provide scalability in Raft, this paper proposes a cost-effective mechanism for elastic auto-scaling in Raft, called BlackWater-Raft or BW-Raft. BW-Raft extends the original Raft with the following abstractions: (1) secretary nodes that take over expensive log synchronization operations from the leader, relaxing the performance constraints on locks. (2) massive low cost observer nodes that handle reads only, improving throughput for typical data intensive services. These abstractions are stateless, allowing elastic scale-out on unreliable yet cheap spot instances. In theory, we demonstrate that BW-Raft can maintain Raft's strong consistency guarantees when scaling out, processing a 50X increase in the number of nodes compared to the original Raft. We have prototyped the BW-Raft on key-value services and evaluated it with many state-of-the-arts on Amazon EC2 and Alibaba Cloud. Our results show that within the same budget, BW-Raft's resource footprint increments are 5-7X smaller than Multi-Raft, and 2X better than original Raft. Using spot instances, BW-Raft can reduces costs by 84.5\% compared to Multi-Raft. In the real world experiments, BW-Raft improves goodput of the 95th-percentile SLO by 9.4X, thus serving as an alternative for services scaling out with strong consistency.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源