论文标题
冷夸克 - 丝线等离子体EOS应用于具有异常磁矩的磁变形夸克恒星
Cold Quark-Gluon Plasma EOS Applied to a Magnetically Deformed Quark Star with an Anomalous Magnetic Moment
论文作者
论文摘要
我们考虑一个QCD冷等离子体激励的状态方程(EOS),以检查异常磁矩(AMM)耦合的影响以及静态块状和扁平质量芯形状形状的较小形状变形。使用FogaçaQCD动机的EOS,它从高温低化学势Quark Gluon等离子体环境转移到低温化学势Quark Stellar Core环境中,我们考虑了TOV方程中的AMM耦合与度量诱导的形状变形参数的影响。 EOS是使用硬gluon和柔软的gluon场张量的软gluon分解来开发的,该振荡器的平均磁场有效质量是胶子的。使用dirac旋转张量耦合到具有夸克风味的磁矩的DIRAC自旋张量。形状参数是在代表修饰TOV方程的扁平和底漆的静态恒星核中引入的。这些方程是在最终质量和半径状态上求解的,该质量和半径状态代表了一个大恒星的核心塌陷,其相变导致未结合的Quark-gluon等离子体。我们发现,组合形状的参数和AMM效应可以改变耦合的EOS-TOV方程,从而导致最终质量增加,最终赤道半径的减小而不会将核心折叠成黑洞且不违反因果关系限制,我们发现范围内的最大质量值:2.3 solar solar <m <m <2.7 solar solar量。这些状态与某些天体物理高质量磁力/脉冲星和重力波系统一致,这些状态可能提供了经历过夸克 - 丝线相变的核心的证据,例如PSR 0943+10,以及GW 190814事件的继发事件。
We consider a QCD cold plasma motivated Equation of State (EOS) to examine the impact of an Anomalous Magnetic Moment (AMM) coupling and small shape deformations for static oblate and prolate core shapes of quark stars. Using the Fogaça QCD motivated EOS which shifts from the high temperature low chemical potential quark gluon plasma environment to the low temperature high chemical potential quark stellar core environment we consider the impact of an AMM coupling with a metric induced shape deformation parameter in the TOV equations. The EOS is developed using a hard gluon and soft gluon decomposition of the gluon field tensor using a mean field effective mass for the gluons. The AMM is considered using the Dirac spin tensor coupled to the EM field tensor with quark flavor based magnetic moments. The shape parameter is introduced in a metric ansatz that represents oblate and prolate static stellar cores for modified TOV equations. These equations are numerically solved for the final mass and radius states representing the core collapse of a massive star with a phase transition leading to an unbound quark-gluon plasma. We find that the combined shape parameter and AMM effects can alter the coupled EOS-TOV equations resulting in an increase in the final mass and a decrease in the final equatorial radius without collapsing the core into a black hole and without violating causality constraints, we find maximum mass values in the range: 2.3 Solar Masses < M < 2.7 Solar Masses. These states are consistent with some astrophysical high mass magnetar/pulsar and gravity wave systems which may provide evidence for a core that has undergone a quark-gluon phase transition such as PSR 0943+10 and the secondary from the GW 190814 event.