论文标题
闪光灯:使用贝叶斯逆计划和学习的运动概况的自动驾驶的快速和轻型运动预测
Flash: Fast and Light Motion Prediction for Autonomous Driving with Bayesian Inverse Planning and Learned Motion Profiles
论文作者
论文摘要
在交通场景中的道路使用者的运动预测对于必须在复杂的动态环境中采取安全,可靠的决策的自动驾驶系统至关重要。我们提出了一种新型的运动预测系统,用于自主驾驶。我们的系统基于贝叶斯逆计划框架,该框架有效地精心策划了基于地图的目标提取,基于经典的基于控制的轨迹发生器以及专家的专家集合轻巧神经网络专门针对运动概况预测。与许多替代方法相反,这种模块化有助于隔离性能因素并更好地解释结果,而不会损害性能。该系统解决了感兴趣的多个方面,即多模式,运动概况不确定性和轨迹物理可行性。我们报告了流行的高速公路数据集NGSIM的几个实验,在轨迹错误方面证明了最先进的性能。我们还对系统组件进行了详细的分析,以及基于行为(例如变更车道与跟随车道)进行分层数据的实验,以洞悉该域中的挑战。最后,我们提出了定性分析,以显示我们方法的其他好处,例如解释产出的能力。
Motion prediction of road users in traffic scenes is critical for autonomous driving systems that must take safe and robust decisions in complex dynamic environments. We present a novel motion prediction system for autonomous driving. Our system is based on the Bayesian inverse planning framework, which efficiently orchestrates map-based goal extraction, a classical control-based trajectory generator and a mixture of experts collection of light-weight neural networks specialised in motion profile prediction. In contrast to many alternative methods, this modularity helps isolate performance factors and better interpret results, without compromising performance. This system addresses multiple aspects of interest, namely multi-modality, motion profile uncertainty and trajectory physical feasibility. We report on several experiments with the popular highway dataset NGSIM, demonstrating state-of-the-art performance in terms of trajectory error. We also perform a detailed analysis of our system's components, along with experiments that stratify the data based on behaviours, such as change-lane versus follow-lane, to provide insights into the challenges in this domain. Finally, we present a qualitative analysis to show other benefits of our approach, such as the ability to interpret the outputs.