论文标题

关于光束方程的空间分析性的持续性

On the persistence of spatial analyticity for the Beam Equation

论文作者

Dufera, Tamirat T., Mebrate, Sileshi, Tesfahun, Achenef

论文摘要

研究了空间分析性的持久性,以解决光束方程$ u_ {tt} + \ left(m +δ^2 \ right)u + | u | u |^{p-1} u = 0 $ on $ \ mathbb r^n \ times \ times \ times \ mathbb r $。特别是,对于一类具有均匀半径分析性$σ_0$半径的分析初始数据,我们获得了分析性$σ(t)$ c $σ(t)$的渐近下限$σ(t)\ ge c/\ sqrt t $ tose $ u(\ cdot,t)$,$ t)$ t \ rigrightrow \ rightrow \ rightarrow \ rightarrow \ fircrow unt。

Persistence of spatial analyticity is studied for solution of the beam equation $ u_{tt} + \left(m+Δ^2\right) u + |u|^{p-1}u = 0$ on $\mathbb R^n \times \mathbb R$. In particular, for a class of analytic initial data with a uniform radius of analyticity $σ_0$, we obtain an asymptotic lower bound $σ(t) \ge c/\sqrt t$ on the uniform radius of analyticity $σ(t)$ of solution $u(\cdot, t)$, as $t \rightarrow \infty.$

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源