论文标题
关于光束方程的空间分析性的持续性
On the persistence of spatial analyticity for the Beam Equation
论文作者
论文摘要
研究了空间分析性的持久性,以解决光束方程$ u_ {tt} + \ left(m +δ^2 \ right)u + | u | u |^{p-1} u = 0 $ on $ \ mathbb r^n \ times \ times \ times \ mathbb r $。特别是,对于一类具有均匀半径分析性$σ_0$半径的分析初始数据,我们获得了分析性$σ(t)$ c $σ(t)$的渐近下限$σ(t)\ ge c/\ sqrt t $ tose $ u(\ cdot,t)$,$ t)$ t \ rigrightrow \ rightrow \ rightarrow \ rightarrow \ fircrow unt。
Persistence of spatial analyticity is studied for solution of the beam equation $ u_{tt} + \left(m+Δ^2\right) u + |u|^{p-1}u = 0$ on $\mathbb R^n \times \mathbb R$. In particular, for a class of analytic initial data with a uniform radius of analyticity $σ_0$, we obtain an asymptotic lower bound $σ(t) \ge c/\sqrt t$ on the uniform radius of analyticity $σ(t)$ of solution $u(\cdot, t)$, as $t \rightarrow \infty.$