论文标题

对科普森和强壮操作员叠加的加权不平等的另一种方法

Another approach to weighted inequalities for a superposition of Copson and Hardy operators

论文作者

Mustafayev, Rza, Yılmaz, Merve

论文摘要

在本文中,我们提出了一种解决不平等的解决方案$ \ bigG(\ int_0^{\ infty} \ bigG(\ int_x^{\ int_x^{\ infty} \ bigG(\ int_0^t h \ bigG)^q w(t)^q w(t) \ bigG)^{1 / r} \ leq c \,\ bigG(\ int_0^{\ infty} h^p v \ bigG)^{1 / p},\ quad h \ in {\ m athfrak m}^+(0,\ infty),$ $使用重新分配技术的组合。这里$ 1 \ le p <\ infty $,$ 0 <q,\,r <\ infty $和$ u,\,\,v,\,w $是$(0,\ infty)$的权重函数。

In this paper, we present a solution to the inequality $$ \bigg( \int_0^{\infty} \bigg( \int_x^{\infty} \bigg( \int_0^t h \bigg)^q w(t)\,dt \bigg)^{r / q} u(x)\,ds \bigg)^{1/r}\leq C \, \bigg( \int_0^{\infty} h^p v \bigg)^{1 / p}, \quad h \in {\mathfrak M}^+(0,\infty), $$ using a combination of reduction techniques and discretization. Here $1 \le p < \infty$, $0 < q ,\, r < \infty$ and $u,\,v,\,w$ are weight functions on $(0,\infty)$.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源