论文标题
如何构建Gorenstein射击模块相对于莫里塔环上的完全偶性对
How to construct Gorenstein projective modules relative to complete duality pairs over Morita rings
论文作者
论文摘要
令$δ= \ left(\ begin {smallmatrix} a&{_an_b} \\ {_bm_a}&b \\\ end {smallmatrix} \ right)$是$ m \ otimes_ {a} n = n = n = n = n = n \ otimes _ $ $ $ $ $ $ $ $ $ $ {m morita un $Δ$ - 模块,使用(完整的)双重对$ a $模块和$ b $ - 模块,概括了毛(Comm。Algebra,2020,22:5296--5310)的结果,围绕三角形矩阵环。此外,我们构建了Gorenstein投影模块,相对于$δ$模块的完全二元性对。最后,我们将ding投影模块的应用程序申请。
Let $Δ=\left(\begin{smallmatrix} A & {_AN_B}\\ {_BM_A} & B \\\end{smallmatrix}\right)$ be a Morita ring with $M\otimes_{A}N=0=N\otimes_{B}M$.We first study how to construct (complete) duality pairs of $Δ$-modules using (complete) duality pairs of $A$-modules and $B$-modules, generalizing the result of Mao (Comm. Algebra, 2020, 12: 5296--5310) about the duality pairs over a triangular matrix ring. Moreover, we construct Gorenstein projective modules relative to complete duality pairs of $Δ$-modules. Finally, we give an application to Ding projective modules.