论文标题

缠结和分层集群

Tangles and Hierarchical Clustering

论文作者

Fluck, Eva

论文摘要

我们建立了缠结之间的联系,缠结是从结构图理论中的概念,在罗伯逊和西摩的图形次要项目中起着核心作用,以及层次聚类。缠结不能仅针对图表定义,而实际上是针对任意连接函数的,这是在某些有限宇宙子集中定义的函数。在典型的聚类应用中,这些宇宙由某些度量空间中的点组成。连接函数通常需要进行下管。这是我们的第一个贡献,即表明,如果子二元分解(所谓的分支分解)连接缠结的中心对偶性定理,如果suppoduromentity被我们称为最大值的不同属性代替,也可以保持。然后,我们在任意度量空间中的有限数据集上定义一个连接函数,并证明其缠结是通过将众所周知的单个链接群集算法应用于相同数据集的群集一对一的对应关系。最后,我们将此对应关系概括为任何分层聚类。我们表明,代表层次聚类结果的数据结构称为树状图,等于最大模块化连接函数及其缠结。 Diestel和Whittle在2016年首先提出了将缠结为簇视为簇的想法,作为一种图像分割的方法。据我们所知,我们的结果是第一个建立缠结和簇之间的技术联系的结果。

We establish a connection between tangles, a concept from structural graph theory that plays a central role in Robertson and Seymour's graph minor project, and hierarchical clustering. Tangles cannot only be defined for graphs, but in fact for arbitrary connectivity functions, which are functions defined on the subsets of some finite universe. In typical clustering applications these universes consist of points in some metric space. Connectivity functions are usually required to be submodular. It is our first contribution to show that the central duality theorem connecting tangles with hierarchical decompositions (so-called branch decompositions) also holds if submodularity is replaced by a different property that we call maximum-submodular. We then define a connectivity function on finite data sets in an arbitrary metric space and prove that its tangles are in one-to-one correspondence with the clusters obtained by applying the well-known single linkage clustering algorithms to the same data set. Lastly we generalize this correspondence for any hierarchical clustering. We show that the data structure that represents hierarchical clustering results, called dendograms, are equivalent to maximum-submodular connectivity functions and their tangles. The idea of viewing tangles as clusters has first been proposed by Diestel and Whittle in 2016 as an approach to image segmentation. To the best of our knowledge, our result is the first that establishes a precise technical connection between tangles and clusters.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源