论文标题
波动的流体动力学和虫洞
Fluctuating Hydrodynamics and Wormholes
论文作者
论文摘要
我们表明,最近对由图表上Q- dits组成的大型模型的流体动力方程进行了重新制定,足以理解混乱的行为。任何此类系统都由大型子系统组成,并通过相对强度与子系统大小的相对强度为零的相互作用结合在一起。在没有能源以外的保护法则的情况下,子系统的哈密顿人构成了通勤运营商的完整集合。流体动力变量是块对角矩阵元素$ρ(e(x))$的密度矩阵中的密度矩阵,在汉密尔顿子系统的联合特征性矩阵中平均在能量箱上平均。为了在逆子系统大小中领先顺序,$ρ(e(x); t)$满足经典随机方程,对于某些系统而言,该方程采用了功能性fokker-Planck方程的形式。在这样的系统中,在具有多个断开边界的空间上,可以将平均光谱形式因子进行平均形式因素。该表示中分解的失败归因于应用流体动力近似所需的时间平均。大量的欧几里得动作纯粹是拓扑。我们对系统的特殊属性进行初步探索,以使表示为指标的功能积分。
We show that a recent reformulation of hydrodynamic equations for a large class of models consisting of q-dits on a graph with short range interactions is sufficient for understanding chaotic behavior. Any such system consists of large subsystems coupled together by interactions whose relative strength goes to zero with the subsystem size. In the absence of conservation laws other than energy, the Hamiltonians of the subsystems form a complete set of commuting operators. The hydrodynamic variables are the block diagonal matrix elements $ρ(e(X))$ of the density matrix in the joint eigenbasis of the subsystem Hamiltonians, averaged over energy bins. To leading order in the inverse subsystem size, $ρ(e(X); t)$ satisfies a classical stochastic equation, which for certain systems takes the form of a functional Fokker-Planck equation. In such systems the time averaged spectral form factors can be written as a two dimensional Euclidean functional integral, on a space with multiple disconnected boundaries. The failure of factorization in this representation is attributable to the time averaging necessary to apply the hydrodynamic approximation. The bulk Euclidean action is purely topological. We make tentative explorations of the special properties of the system that are required in order to have a representation as a functional integral over metrics.