论文标题

对抗支撑对准

Adversarial Support Alignment

论文作者

Tong, Shangyuan, Garipov, Timur, Zhang, Yang, Chang, Shiyu, Jaakkola, Tommi S.

论文摘要

我们研究了对齐分布支持的问题。与现有的分配对齐工作相比,支撑对齐不需要匹配。我们提出对称支持差异作为差异支持之间的不匹配的差异措施。我们表明,精选的歧视者(例如,接受过詹森 - 香农发散训练的歧视者)能够将支持差异作为其一维输出空间的支持差异。遵循此结果,我们的方法通过最大程度地降低了通过对抗过程中判别器1D空间中对称放松的最佳运输成本来对齐的支持。此外,我们表明我们的方法可以通过增加运输分配的容忍度来视为现有一致性概念的限制。我们定量评估跨域适应任务的方法,并在标签分布中进行了变化。我们的实验表明,与其他基于对齐的基线相比,所提出的方法对这些变化更强大。

We study the problem of aligning the supports of distributions. Compared to the existing work on distribution alignment, support alignment does not require the densities to be matched. We propose symmetric support difference as a divergence measure to quantify the mismatch between supports. We show that select discriminators (e.g. discriminator trained for Jensen-Shannon divergence) are able to map support differences as support differences in their one-dimensional output space. Following this result, our method aligns supports by minimizing a symmetrized relaxed optimal transport cost in the discriminator 1D space via an adversarial process. Furthermore, we show that our approach can be viewed as a limit of existing notions of alignment by increasing transportation assignment tolerance. We quantitatively evaluate the method across domain adaptation tasks with shifts in label distributions. Our experiments show that the proposed method is more robust against these shifts than other alignment-based baselines.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源