论文标题

无限级欧几里得晶格和循环组

Infinite-rank Euclidean Lattices and Loop Groups

论文作者

Dutour, Mathieu, Patnaik, Manish M.

论文摘要

在本文中,我们将一个无限级亲欧几里德晶格的家族与正式循环组的元素和基础仿射Kac-Moody代数的最高权重表示。在元素具有多项式代表的情况下,我们可以证明我们的晶格是theta-finite的,从而使我们可以在每个晶格上附着一个明确的theta样函数。

In this paper, we associate a family of infinite-rank pro-Euclidean lattices to elements of a formal loop group and a highest weight representation of the underlying affine Kac--Moody algebra. In the case that the element has a polynomial representative, we can prove our lattices are theta-finite in the sense of Bost, allowing us to attach to each of our lattices a well-defined theta-like function.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源