论文标题
具有大戴森等级的整数分区
Integer partitions with large Dyson rank
论文作者
论文摘要
整数分区的Dyson等级是其最大零件与其包含的零件数量之间的差异。使用Fine-Dyson对称性,我们为N/2大于N/2的N分区数量提供了公式,并且证明了在固定残基类中具有较高等级的分区计数的身份。
The Dyson rank of an integer partition is the difference between its largest part and the number of parts it contains. Using Fine-Dyson symmetry, we give formulas for the number of partitions of n with rank larger than n/2, and we prove identities for counts of partitions with large rank in fixed residue classes.