论文标题
部分可观测时空混沌系统的无模型预测
Weaker yet again: mass spectrum-consistent cosmological constraints on the neutrino lifetime
论文作者
论文摘要
我们考虑不可见的中微子衰变$ν_h\ toν_l + ϕ $在超偏见的限制中,并计算与宇宙微波背景(CMB)各向异性相关的中微子各向异性损失率。为了改善我们以前假设$ν_l$和$ ϕ $的工作,我们以与实验确定的中微子质量分裂相一致的方式恢复了这项工作。我们发现,非零$ m_ {νl} $在损耗率$γ_ {\ rm t} $中引入了一个新的阶段空间因素,与$(Δm_ν^2/m_ {ν_h}^2)^2 $ the父母和女儿中心之间的小平方质量间隔的极限,$ (Δm_ν^2/m_ {νH}^2)^2(m_ {νH}/e_ν)^5(1/τ_0)$,其中$τ_0$是$ν_h$ sert-rest-frame-frame-frame-frame lifetime。使用此结果的一般形式,我们使用Planck 2018 CMB数据更新$τ_0$的限制。我们发现,对于质量$ m_ {νh} \ Lessim 0.1 {\ rm ev} $的父母中微子,新的阶段空间因子削弱了其寿命的约束,高达50倍,如果$Δm_ν^2 $与大气质量差距相对应,并且与Solar Mass Gap相比,则与$ 10^{5} $相比, $ m_ {νl} = 0 $。修订后的约束是(i)$τ^0 \ gtrsim(6 \至10)\ times 10^5〜 {\ rm s} $和$τ^0 \ gtrsim(400 \ to 500) \ gtrsim(2 \至3)\ times 10^7〜 {\ rm s} $在两个衰减通道的情况下,带有一个近乎宽松的大气质量间隙。与以前的幼稚极限相比,缩放为$ m_ {νh}^5 $,这些质谱频谱一致的$τ_0$约束非常独立于母体质量,并在未来二十年的ICECUBE和其他中inino望远镜的投影范围内打开了一系列参数空间。
We consider invisible neutrino decay $ν_H \to ν_l + ϕ$ in the ultra-relativistic limit and compute the neutrino anisotropy loss rate relevant for the cosmic microwave background (CMB) anisotropies. Improving on our previous work which assumed massless $ν_l$ and $ϕ$, we reinstate in this work the daughter neutrino mass $m_{νl}$ in a manner consistent with the experimentally determined neutrino mass splittings. We find that a nonzero $m_{νl}$ introduces a new phase space factor in the loss rate $Γ_{\rm T}$ proportional to $(Δm_ν^2/m_{ν_H}^2)^2$ in the limit of a small squared mass gap between the parent and daughter neutrinos, i.e., $Γ_{\rm T} \sim (Δm_ν^2/m_{νH}^2)^2 (m_{νH}/E_ν)^5 (1/τ_0)$, where $τ_0$ is the $ν_H$ rest-frame lifetime. Using a general form of this result, we update the limit on $τ_0$ using the Planck 2018 CMB data. We find that for a parent neutrino of mass $m_{νH} \lesssim 0.1 {\rm eV}$, the new phase space factor weakens the constraint on its lifetime by up to a factor of 50 if $Δm_ν^2$ corresponds to the atmospheric mass gap and up to $10^{5}$ if the solar mass gap, in comparison with naive estimates that assume $m_{νl}=0$. The revised constraints are (i) $τ^0 \gtrsim (6 \to 10) \times 10^5~{\rm s}$ and $τ^0 \gtrsim (400 \to 500)~{\rm s}$ if only one neutrino decays to a daughter neutrino separated by, respectively, the atmospheric and the solar mass gap, and (ii) $τ^0 \gtrsim (2 \to 3) \times 10^7~{\rm s}$ in the case of two decay channels with one near-common atmospheric mass gap. In contrast to previous, naive limits which scale as $m_{νH}^5$, these mass spectrum-consistent $τ_0$ constraints are remarkably independent of the parent mass and open up a swath of parameter space within the projected reach of IceCube and other neutrino telescopes in the next two decades.