论文标题
SOK:图形结构数据的差异隐私
SoK: Differential Privacy on Graph-Structured Data
论文作者
论文摘要
在这项工作中,我们在图形结构数据的上下文中研究了差异隐私(DP)的应用。我们讨论适用于图表及其相关统计数据的DP的表述以及基于图的数据(包括图形神经网络(GNN))的机器学习。在图形结构数据的上下文中,DP的公式很困难,因为各个数据点是互连的(通常是非线性或稀疏的)。这种连通性使私人学习中个人隐私损失的计算变得复杂。由于没有单个,完善的DP公式在图形设置中,问题加剧了问题。此问题扩展到GNN的领域,使图形结构数据的私人机器学习成为一个具有挑战性的任务。缺乏先前的系统化工作促使我们从隐私角度研究基于图的学习。在这项工作中,我们将DP在图表上的不同公式进行系统化,讨论挑战和有希望的应用,包括GNN域。我们将图形分析任务和图形学习任务与GNN进行比较和分开的作品。最后,我们通过讨论开头的问题和潜在的方向来结束我们的工作,以在该领域进行进一步研究。
In this work, we study the applications of differential privacy (DP) in the context of graph-structured data. We discuss the formulations of DP applicable to the publication of graphs and their associated statistics as well as machine learning on graph-based data, including graph neural networks (GNNs). The formulation of DP in the context of graph-structured data is difficult, as individual data points are interconnected (often non-linearly or sparsely). This connectivity complicates the computation of individual privacy loss in differentially private learning. The problem is exacerbated by an absence of a single, well-established formulation of DP in graph settings. This issue extends to the domain of GNNs, rendering private machine learning on graph-structured data a challenging task. A lack of prior systematisation work motivated us to study graph-based learning from a privacy perspective. In this work, we systematise different formulations of DP on graphs, discuss challenges and promising applications, including the GNN domain. We compare and separate works into graph analysis tasks and graph learning tasks with GNNs. Finally, we conclude our work with a discussion of open questions and potential directions for further research in this area.