论文标题
最终同构同构和戈伦斯坦射影模块
Eventually homological isomorphisms and Gorenstein projective modules
论文作者
论文摘要
我们证明,模块类别之间的某种最终同源同构象征性诱导其奇异性类别,Gorenstein缺陷类别和Gorenstein投射模块的稳定类别之间的三角等效性。此外,我们表明Auslander-Reiten的猜想和Gorenstein对称性可以通过最终的同构同构来减少。将结果应用于箭头的去除和顶点去除,我们描述了某些非自动代数的Gorenstein射击模块,并验证了某些代数的Auslander-Reiten Reiten猜想。
We prove that a certain eventually homological isomorphism between module categories induces a triangle equivalence between their singularity categories, Gorenstein defect categories and the stable categories of Gorenstein projective modules. Further, we show that Auslander-Reiten conjecture and Gorenstein symmetry conjecture can be reduced by eventually homological isomorphisms. Applying the results to arrow removal and vertex removal, we describe the Gorenstein projective modules over some non-monomial algebras, and we verify the Auslander-Reiten conjecture for certain algebras.