论文标题

对象定位在单个粗点监督下

Object Localization under Single Coarse Point Supervision

论文作者

Yu, Xuehui, Chen, Pengfei, Wu, Di, Hassan, Najmul, Li, Guorong, Yan, Junchi, Shi, Humphrey, Ye, Qixiang, Han, Zhenjun

论文摘要

基于点的对象定位(POL)在低成本数据注释下追求高性能对象传感,引起了人们的关注。但是,点注释模式不可避免地引入了带注释点不一致的语义差异。现有的POL方法对难以定义的准确关键点注释进行了重大答复。在这项研究中,我们提出了一种使用粗点注释的POL方法,将监督信号从准确的关键点放松到自由斑点点。为此,我们提出了一种粗略的优化(CPR)方法,据我们所知,这是从算法的角度来减轻语义差异的首次尝试。 CPR构建点袋,选择语义相关点,并通过多个实例学习(MIL)产生语义中心点。通过这种方式,CPR定义了一个弱监督的演化程序,该程序可确保在粗糙点监督下培训高性能对象定位器。可可,DOTA和我们提议的SEAPERSON数据集的实验结果验证了CPR方法的有效性。该数据集和代码将在https://github.com/ucas-vg/pointtinybenchmark/上提供。

Point-based object localization (POL), which pursues high-performance object sensing under low-cost data annotation, has attracted increased attention. However, the point annotation mode inevitably introduces semantic variance for the inconsistency of annotated points. Existing POL methods heavily reply on accurate key-point annotations which are difficult to define. In this study, we propose a POL method using coarse point annotations, relaxing the supervision signals from accurate key points to freely spotted points. To this end, we propose a coarse point refinement (CPR) approach, which to our best knowledge is the first attempt to alleviate semantic variance from the perspective of algorithm. CPR constructs point bags, selects semantic-correlated points, and produces semantic center points through multiple instance learning (MIL). In this way, CPR defines a weakly supervised evolution procedure, which ensures training high-performance object localizer under coarse point supervision. Experimental results on COCO, DOTA and our proposed SeaPerson dataset validate the effectiveness of the CPR approach. The dataset and code will be available at https://github.com/ucas-vg/PointTinyBenchmark/.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源