论文标题
图灵不稳定性附近的近似局部二面模式
Approximate localised dihedral patterns near a Turing instability
论文作者
论文摘要
在各种连续模型中,通过实验和数字发现了涉及细胞六角形或正方形的完全局部模式。但是,目前尚无数学理论,可以从静止状态出现这些局部细胞模式。一个关键问题是,一维模式的标准技术已证明不足以理解更高维度的本地化。在这项工作中,我们使用在轴对称模式的研究中开发的技术提出了一种全面的方法。我们的分析涵盖了配备各种二面体对称性的局部模式,避免了对预定晶格上解决方案的限制。本文中的背景是一种理论,用于在图灵不稳定性附近的一般平面反应扩散方程中出现这种模式。在极坐标中提出反应扩散系统,我们在角变量中执行有限模式傅立叶分解,以产生大型耦合径向径向普通微分方程的系统。然后,我们利用各种径向空间动力学方法,例如不变歧管,重新缩放图和正常形式分析,从而导致代数匹配条件,以使有限模式减少中存在局部模式。这种代数匹配条件是非平凡的,我们通过手工计算和来自多项式代数的gröbner碱基的结合来求解,以揭示存在大量局部二面模式的存在。这些结果捕获了实验中见证的新兴局部六边形模式的本质。此外,我们结合了计算机辅助的分析和牛顿 - 坎多维奇程序,以证明对任意大型傅立叶分解的6m倍对称性的局部贴片的存在。这包括无法用于分析治疗的局部六边形斑块。
Fully localised patterns involving cellular hexagons or squares have been found experimentally and numerically in various continuum models. However, there is currently no mathematical theory for the emergence of these localised cellular patterns from a quiescent state. A key issue is that standard techniques for one-dimensional patterns have proven insufficient for understanding localisation in higher dimensions. In this work, we present a comprehensive approach to this problem by using techniques developed in the study of axisymmetric patterns. Our analysis covers localised patterns equipped with a wide range of dihedral symmetries, avoiding a restriction to solutions on a predetermined lattice. The context in this paper is a theory for the emergence of such patterns near a Turing instability for a general class of planar reaction-diffusion equations. Posing the reaction-diffusion system in polar coordinates, we carry out a finite-mode Fourier decomposition in the angular variable to yield a large system of coupled radial ordinary differential equations. We then utilise various radial spatial dynamics methods, such as invariant manifolds, rescaling charts, and normal form analysis, leading to an algebraic matching condition for localised patterns to exist in the finite-mode reduction. This algebraic matching condition is nontrivial, which we solve via a combination of by-hand calculations and Gröbner bases from polynomial algebra to reveal the existence of a plethora of localised dihedral patterns. These results capture the essence of the emergent localised hexagonal patterns witnessed in experiments. Moreover, we combine computer-assisted analysis and a Newton-Kantorovich procedure to prove the existence of localised patches with 6m-fold symmetry for arbitrarily large Fourier decompositions. This includes the localised hexagon patches that have been elusive to analytical treatment.