论文标题
可解释的堆叠合奏模型,用于无静电的到达时间估计
An Explainable Stacked Ensemble Model for Static Route-Free Estimation of Time of Arrival
论文作者
论文摘要
为了比较替代出租车时间表并计算它们,并提供对即将到来的驾驶员和乘客的出租车旅行的见解,可以预测旅行或其估计到达时间(ETA)的持续时间(ETA)。为了达到高度预测的精确度,ETA的机器学习模型是艺术的状态。进一步提高预测精度的一种尚未开发的选择是将多个ETA模型组合为合奏。虽然可能提高预测精度,但主要的缺点是由于复杂的合奏体系结构,这种合奏所做的预测变得不那么透明。解决此缺点的一种选择是应用可解释的人工智能(XAI)。本文的贡献是三倍。首先,我们将来自以前的ETA工作的多个机器学习模型结合到了一个两级合奏模型 - 一个堆叠的合奏模型 - 本身就是新颖的;因此,我们可以胜过以前最先进的无路由ETA方法。其次,我们应用现有的XAI方法来解释合奏的第一和第二级模型。第三,我们提出了三种连接方法,将第一级解释与第二级解释相结合。那些加入方法使我们能够解释回归任务的堆叠合奏。实验评估表明,ETA模型正确地了解了推动预测的那些输入特征的重要性。
To compare alternative taxi schedules and to compute them, as well as to provide insights into an upcoming taxi trip to drivers and passengers, the duration of a trip or its Estimated Time of Arrival (ETA) is predicted. To reach a high prediction precision, machine learning models for ETA are state of the art. One yet unexploited option to further increase prediction precision is to combine multiple ETA models into an ensemble. While an increase of prediction precision is likely, the main drawback is that the predictions made by such an ensemble become less transparent due to the sophisticated ensemble architecture. One option to remedy this drawback is to apply eXplainable Artificial Intelligence (XAI). The contribution of this paper is three-fold. First, we combine multiple machine learning models from our previous work for ETA into a two-level ensemble model - a stacked ensemble model - which on its own is novel; therefore, we can outperform previous state-of-the-art static route-free ETA approaches. Second, we apply existing XAI methods to explain the first- and second-level models of the ensemble. Third, we propose three joining methods for combining the first-level explanations with the second-level ones. Those joining methods enable us to explain stacked ensembles for regression tasks. An experimental evaluation shows that the ETA models correctly learned the importance of those input features driving the prediction.