论文标题
二进制多面体空间
Equivariant instanton Floer homology and calculations for the binary polyhedral spaces
论文作者
论文摘要
从Miller Eismeier的意义上讲,我们计算了Equivariant Instanton Floer同源性,用于微不足道的$ SO(3)$ - 捆绑二进制二进制多面体空间,其系数为pid $ r $,而$ r $ $ 2 \ in r $ in R $是不可逆转的。在此过程中,我们修改了定义Equivariant Instanton浮动组所需的代数结构的一部分。
We calculate the equivariant instanton Floer homology, in the sense of Miller Eismeier, for the trivial $SO(3)$-bundle over the binary polyhedral spaces with coefficients in a PID $R$ for which $2\in R$ is invertible. Along the way we modify a part of the algebraic construction needed to define the equivariant instanton Floer groups.