论文标题
全息化的分解和全球对称性
Factorization and global symmetries in holography
论文作者
论文摘要
我们考虑3D Chern-Simons理论产生的全息图的玩具模型。在这种情况下,最近已经提出了超过2D CFT的集合平均值。我们提出了一种替代方法,在这种方法中,人们没有对批量的几何形状进行概括,而是对批量理论的一种一种形式的全球对称性。这完成了两个任务:它确保了批量理论没有全局对称性,正如对量子重力理论所期望的那样,并且使分区在边界上的空间上的功能与边界上的模块化2D CFT相吻合。特别是,在虫洞几何形状上,人们找到了分区函数的分解答案。对于非亚伯式Chern-Simons理论,相关的单一形式对称性是不可固化的,其测量值对应于Lagrangian Anyon的凝结。
We consider toy models of holography arising from 3d Chern-Simons theory. In this context a duality to an ensemble average over 2d CFTs has been recently proposed. We put forward an alternative approach in which, rather than summing over bulk geometries, one gauges a one-form global symmetry of the bulk theory. This accomplishes two tasks: it ensures that the bulk theory has no global symmetries, as expected for a theory of quantum gravity, and it makes the partition function on spacetimes with boundaries coincide with that of a modular-invariant 2d CFT on the boundary. In particular, on wormhole geometries one finds a factorized answer for the partition function. In the case of non-Abelian Chern-Simons theories, the relevant one-form symmetry is non-invertible, and its gauging corresponds to the condensation of a Lagrangian anyon.