论文标题
探测三维磁场:i-极化灰尘发射
Probing Three-Dimensional Magnetic Fields: I -- Polarized Dust Emission
论文作者
论文摘要
偏振粉尘发射被广泛用于在二维中痕迹星际磁场的天基(POS)组件。它进入三维磁场的潜力,包括磁场相对于视线(LOS)的倾斜角对于多种天体物理问题至关重要。基于观察到的极化分数和posalfvén马赫的统计特征$ \叠加{m _ {\ rm a}} _ {,\ bot} $分布,我们提出了一种估计倾斜角的新方法。在我们的方法中考虑了各向异性磁水动力学(MHD)湍流所产生的磁场波动。通过使用由3D可压缩MHD湍流模拟产生的合成粉尘发射,我们表明波动优先垂直于平均磁场。我们发现倾斜角是去极化的主要药物,而磁场强度和密度的波动具有微不足道的贡献。我们提出并证明,在强烈磁化的参考位置以极化分数可以计算出感兴趣区域的平均倾斜角,其中$ \ edimline {m _ {\ rm a}} _ {,\ bot}^2 \ ll1 $。我们测试并表明新方法可以在亚alfvénic,trans-alfvénic和适度的超级alfvénic条件下追踪3D磁场($ 0.4 \ lisessim m _ {\ rm a} \ rm a} \ lyssim1.2 $)。我们从数值上量化了估计的倾斜角度和实际倾斜角之间的差异范围为0至$ 20^\ circ $,中位数为$ \ le10^\ circ $。
Polarized dust emission is widely used to trace the plane-of-the-sky (POS) component of interstellar magnetic fields in two dimensions. Its potential to access three-dimensional magnetic fields, including the inclination angle of the magnetic fields relative to the line-of-sight (LOS), is crucial for a variety of astrophysical problems. Based on the statistical features of observed polarization fraction and POS Alfvén Mach number $\overline{M_{\rm A}}_{,\bot}$ distribution, we present a new method for estimating the inclination angle. The magnetic field fluctuations raised by anisotropic magnetohydrodynamic (MHD) turbulence are taken into account in our method. By using synthetic dust emission generated from 3D compressible MHD turbulence simulations, we show that the fluctuations are preferentially perpendicular to the mean magnetic field. We find the inclination angle is the major agent for depolarization, while fluctuations of magnetic field strength and density have an insignificant contribution. We propose and demonstrate that the mean inclination angle over a region of interest can be calculated from the polarization fraction in a strongly magnetized reference position, where $\overline{M_{\rm A}}_{,\bot}^2\ll1$. We test and show that the new method can trace the 3D magnetic fields in sub-Alfvénic, trans-Alfvénic, and moderately super-Alfvénic conditions ($0.4\lesssim M_{\rm A}\lesssim1.2$). We numerically quantify that the difference between the estimated inclination angle and actual inclination angle ranges from 0 to $20^\circ$ with a median value of $\le10^\circ$.