论文标题

部分可观测时空混沌系统的无模型预测

Scheduling a single machine with compressible jobs to minimize maximum lateness

论文作者

Vakhania, Nodari, Werner, Frank, Reynoso, Alejandro

论文摘要

储层计算是预测湍流的有力工具,其简单的架构具有处理大型系统的计算效率。然而,其实现通常需要完整的状态向量测量和系统非线性知识。我们使用非线性投影函数将系统测量扩展到高维空间,然后将其输入到储层中以获得预测。我们展示了这种储层计算网络在时空混沌系统上的应用,该系统模拟了湍流的若干特征。我们表明,使用径向基函数作为非线性投影器,即使只有部分观测并且不知道控制方程,也能稳健地捕捉复杂的系统非线性。最后,我们表明,当测量稀疏、不完整且带有噪声,甚至控制方程变得不准确时,我们的网络仍然可以产生相当准确的预测,从而为实际湍流系统的无模型预测铺平了道路。

The problem of scheduling non-simultaneously released jobs with due dates on a single machine with the objective to minimize the maximum job lateness is known to be strongly NP-hard. Here we consider an extended model in which the compression of the job processing times is allowed. The compression is accomplished at the cost of involving additional emerging resources, whose use, however, yields some cost. With a given upper limit $U$ on the total allowable cost, one wishes to minimize the maximum job lateness. It is clear that, by using the available resources, some jobs may complete earlier and the objective function value may respectively be decreased. As we show here, for minimizing the maximum job lateness, by shortening the processing time of some specially determined jobs, the objective value can be decreased. Although the generalized problem is harder than the generic non-compressible version, given a ``sufficient amount'' of additional resources, we can solve the problem optimally. We determine the compression rate for some specific jobs and develop an algorithm that obtains an optimal solution. Such an approach can be beneficial in practice since the manufacturer can be provided with an information about the required amount of additional resources in order to solve the problem optimally. In case the amount of the available additional resources is less than used in the above solution, i.e., it is not feasible, it is transformed to a tight minimal feasible solution.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源