论文标题
美元
$q$th-root non-Hermitian Floquet topological insulators
论文作者
论文摘要
物质的浮部阶段由于其动力学和拓扑性质而引起了极大的关注。在这项工作中,我们引入了一种通用方式,用于采用任何描述Floquet拓扑问题的Evolution Operator $ u $的整数$ Q $ t-th-th。我们进一步应用了$ Q $ th-th-th-th-th-th $ th-和$ 3^n $ th-th-th-th-th-th-th-th-th-then-Hermitian floquet floquet拓扑绝缘子(FTIS)。在那里,我们明确地证明了在分数quasienergies $ \ pm(0,1,... 2^{n})π/2^{n} $和$ \ pm(0,1,...,...,3^{n})π/3^{n} $中,由其高度控制的配偶系统的人数。值得注意的是,我们观察到非热性诱导的分数 - 质量角模式以及非弱者皮肤效应与分数质量质量边缘状态的共存。因此,我们的发现建立了一个在Floquet Open Systems中构建有趣类别的拓扑问题的框架。
Floquet phases of matter have attracted great attention due to their dynamical and topological nature that are unique to nonequilibrium settings. In this work, we introduce a generic way of taking any integer $q$th-root of the evolution operator $U$ that describes Floquet topological matter. We further apply our $q$th-rooting procedure to obtain $2^n$th- and $3^n$th-root first- and second-order non-Hermitian Floquet topological insulators (FTIs). There, we explicitly demonstrate the presence of multiple edge and corner modes at fractional quasienergies $\pm(0,1,...2^{n})π/2^{n}$ and $\pm(0,1,...,3^{n})π/3^{n}$, whose numbers are highly controllable and capturable by the topological invariants of their parent systems. Notably, we observe non-Hermiticity induced fractional-quasienergy corner modes and the coexistence of non-Hermitian skin effect with fractional-quasienergy edge states. Our findings thus establish a framework of constructing an intriguing class of topological matter in Floquet open systems.