论文标题

基于增强学习的语音交互,以清除电梯环境中机器人的路径

Reinforcement Learning based Voice Interaction to Clear Path for Robots in Elevator Environment

论文作者

Ma, Wanli, Gao, Xinyi, Shi, Jianwei, Hu, Hao, Wang, Chaoyang, Liang, Yanxue, Karakus, Oktay

论文摘要

由于需要减少等待下一个电梯造成的时间,因此在电梯中有效使用该空间是非常必要的。为了为此提供解决方案,我们提出了一种混合方法,将加固学习(RL)与机器人导航的语音交互结合在进入电梯的场景中。与传统的导航方法相比,RL提供了具有很高探索能力的机器人,可以找到进入电梯的新路径,例如最佳的相互碰撞避免(ORCA)。提出的方法允许机器人对电梯采取积极的清晰行动,而一群人站在电梯的入口处,那里仍然有很多空间。这是通过将清晰的路径动作(语音提示)嵌入RL框架中来完成的,而建议的导航策略可以帮助机器人有效,安全地完成任务。我们的模型方法可与最先进的导航政策相比,在没有主动的清除路径操作的情况下,进入电梯的成功率和奖励都有很大的提高。

Efficient use of the space in an elevator is very necessary for a service robot, due to the need for reducing the amount of time caused by waiting for the next elevator. To provide a solution for this, we propose a hybrid approach that combines reinforcement learning (RL) with voice interaction for robot navigation in the scene of entering the elevator. RL provides robots with a high exploration ability to find a new clear path to enter the elevator compared to traditional navigation methods such as Optimal Reciprocal Collision Avoidance (ORCA). The proposed method allows the robot to take an active clear path action towards the elevator whilst a crowd of people stands at the entrance of the elevator wherein there are still lots of space. This is done by embedding a clear path action (voice prompt) into the RL framework, and the proposed navigation policy helps the robot to finish tasks efficiently and safely. Our model approach provides a great improvement in the success rate and reward of entering the elevator compared to state-of-the-art navigation policies without active clear path operation.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源