论文标题

在嘈杂的高斯环境下的联合参数估计的最终精度

Ultimate precision of joint parameter estimation under noisy Gaussian environment

论文作者

Lahcen, Bakmou, Mohammed, Daoud

论文摘要

多参数量子估计理论的主要问题是找到一个最终的测量方案,以超越标准量子限制,即每个准古典估计测量都受到限制。尽管在没有环境噪声的某些细节量子方案中,多参数量子估计的最终灵敏度可以超过标准量子极限。但是,由于环境波动的不可避免的存在,噪声的存在对增强精度的增强施加了局限性。在这里,我们解决了使用高斯量子资源的使用及其在现实噪声下达到标准量子限制方面的优势。在这种情况下,我们的工作旨在探索一对参数的同时估算,这些参数表征作用于高斯探针并受到开放动力学的参数。更确切地说,我们将重点放在将其减少到各种高斯探针状态后的一般两型混合挤压的位移热状态下,例如;两种模式纯净的真空吸尘器,两种模式纯净的真空吸尘器,两种模式混合置换热,两种模式混合挤压热热。为了研究最终估计精度,我们在各种情况下评估了HCRB的上和底部结合。我们发现,当纠缠状态,两种模式纯净的真空和两种模式混合挤压热量被用作探针状态时,HCRB的上部和底端在存在噪声环境的情况下击败了标准量子限制。

The major problem of multiparameter quantum estimation theory is to find an ultimate measurement scheme to go beyond the standard quantum limits that each quasi-classical estimation measurement is limited by. Although, in some specifics quantum protocols without environmental noise, the ultimate sensitivity of a multiparameter quantum estimation can beat the standard quantum limit. However, the presence of noise imposes limitations on the enhancement of precision due to the inevitable existence of environmental fluctuations. Here, we address the motivation behind the usage of Gaussian quantum resources and their advantages in reaching the standard quantum limits under realistic noise. In this context, our work aims to explore the ultimate limits of precision for the simultaneous estimation of a pair of parameters that characterize the displacement channel acting on Gaussian probes and subjected to open dynamics. More precisely, we focus on a general two-mode mixed squeezed displaced thermal state, after reducing it to various Gaussian probes states, like; a two-mode pure squeezed vacuum, two-mode pure displaced vacuum, two-mode mixed displaced thermal, two-mode mixed squeezed thermal. To study the ultimate estimation precision, we evaluate the upper and bottom bound of HCRB in various cases. We find that when the entangled states, two-mode pure squeezed vacuum and two-mode mixed squeezed thermal, are employed as probes states, the upper and bottom bound of HCRB beats the standard quantum limit in the presence of a noisy environment.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源