论文标题

DeepFake样式转移混合物:关于合成图像的第一张法医弹道研究

Deepfake Style Transfer Mixture: a First Forensic Ballistics Study on Synthetic Images

论文作者

Guarnera, Luca, Giudice, Oliver, Battiato, Sebastiano

论文摘要

基于生成架构的最新样式转移技术能够获得合成的多媒体内容,或者通常称为深击,几乎没有文物。研究人员已经证明,合成图像包含的模式不仅可以确定它是深击,还可以确定用于创建图像数据本身的生成架构。这些痕迹可以利用为研究在深击中从未解决过的问题。为此,在本文中提出了一种第一种调查以样式转移操作为约束的深击图像图像弹道的方法。具体而言,本文介绍了一项研究,该研究是针对生成体系结构处理样式传输的数字图像的数字图像的。此外,为了在深击图像上准确地解决和研究法医弹道,研究了样式转移操作的一些数学特性。

Most recent style-transfer techniques based on generative architectures are able to obtain synthetic multimedia contents, or commonly called deepfakes, with almost no artifacts. Researchers already demonstrated that synthetic images contain patterns that can determine not only if it is a deepfake but also the generative architecture employed to create the image data itself. These traces can be exploited to study problems that have never been addressed in the context of deepfakes. To this aim, in this paper a first approach to investigate the image ballistics on deepfake images subject to style-transfer manipulations is proposed. Specifically, this paper describes a study on detecting how many times a digital image has been processed by a generative architecture for style transfer. Moreover, in order to address and study accurately forensic ballistics on deepfake images, some mathematical properties of style-transfer operations were investigated.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源