论文标题
整数量子厅过渡中的湍流层次结构和多纹
Turbulence Hierarchy and Multifractality in the Integer Quantum Hall Transition
论文作者
论文摘要
我们为在整数量子厅过渡的层间区域中表征介质波动的问题提供了一个新的观点。我们发现,通过在显微镜模型中改变外部磁场而产生的纵向和横向电导波动是多重的,并且导致电导率增量(磁电导)的分布(尾部间(磁性)(磁性)(间歇性间)和相应的型式能式能式能式能式的throsorov akolm kyorogorogorogorogorogorogorogorogorogogorogorogogogogogorogogogogogogogogog oge,the themartical结构的签名(间歇性)和签名。我们通过解释H理论框架中电导增量的随机过程来确认这张图片,这是一种连续的时间随机方法,结合了Kolmogorov理论的基本特征。电导“时间序列”的多重分析结合与H理论形式主义相结合,为量子霍尔转变中介质波动的总体表征提供了强有力的支持,这是具有多型的随机性现象,具有多局限性的层次,构造,拼接和级联效应。
We offer a new perspective to the problem of characterizing mesoscopic fluctuations in the inter-plateau region of the integer quantum Hall transition. We found that longitudinal and transverse conductance fluctuations, generated by varying the external magnetic field within a microscopic model, are multifractal and lead to distributions of conductance increments (magnetoconductance) with heavy tails (intermittency) and signatures of a hierarchical structure (a cascade) in the corresponding stochastic process, akin to Kolmogorov's theory of fluid turbulence. We confirm this picture by interpreting the stochastic process of the conductance increments in the framework of H-theory, which is a continuous-time stochastic approach that incorporates the basic features of Kolmogorov's theory. The multifractal analysis of the conductance "time series," combined with the H-theory formalism provides, strong support for the overall characterization of mesoscopic fluctuations in the quantum Hall transition as a multifractal stochastic phenomenon with multiscale hierarchy, intermittency, and cascade effects.