论文标题

测量(超级)形成的形状的几何形状

The geometry of gauged (super)conformal mechanics

论文作者

Mirfendereski, Delaram, Raeymaekers, Joris, Şanlı, Canberk, Bleeken, Dieter Van den

论文摘要

在最近探索的示例中,我们在一维Sigma模型中进行了系统研究,该模型已被评估。也许令人惊讶的是,我们发现了Sigma模型的类别,这些模型仅以其非涂层形式不变,并且只有在测量后才变得完全不变。在这些情况下,测量的Sigma模型的目标空间满足了众所周知的保形几何约束的变形。我们考虑骨型模型及其$ \ MATHCAL {N} = 1,2,4 $ supersymmetratric Extensions。我们解决了物理希尔伯特空间上实施(超)形式对称性时的量子排序。我们的一般结果的示例由$ d(2,1; 0)$ - 与黑洞物理相关的不变库仑分支模型提供。

Motivated by recently explored examples, we undertake a systematic study of conformal invariance in one-dimensional sigma models where an isometry group has been gauged. Perhaps surprisingly, we uncover classes of sigma models which are only scale invariant in their ungauged form and become fully conformally invariant only after gauging. In these cases the target space of the gauged sigma model satisfies a deformation of the well-known conformal geometry constraints. We consider bosonic models as well as their $\mathcal{N} = 1,2,4$ supersymmetric extensions. We solve the quantum ordering ambiguities in implementing (super-) conformal symmetry on the physical Hilbert space. Examples of our general results are furnished by the $D(2,1;0)$-invariant Coulomb branch quiver models relevant for black hole physics.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源