论文标题

DISECT:用于参数推理和控制机器人切割中的可区分模拟器

DiSECt: A Differentiable Simulator for Parameter Inference and Control in Robotic Cutting

论文作者

Heiden, Eric, Macklin, Miles, Narang, Yashraj, Fox, Dieter, Garg, Animesh, Ramos, Fabio

论文摘要

机器人切割软材料对于诸如食品加工,家庭自动化和手术操作等应用至关重要。与机器人技术的其他领域一样,模拟器可以促进控制器验证,策略学习和数据集生成。此外,可区分的模拟器可以启用基于梯度的优化,这对于校准模拟参数和优化控制器是无价的。在这项工作中,我们介绍了Disect:第一个用于切割软材料的可区分模拟器。模拟器以基于签名的距离场(SDF)的连续接触模型以及连续的损坏模型增强了有限元方法(FEM),该模型将弹簧插入切割平面的相对侧,并使它们削弱直到零刚度,从而构成裂纹形成。通过各种实验,我们评估了模拟器的性能。我们首先表明可以对模拟器进行校准,以匹配最先进的商业求解器和现实世界切割数据集的产力和变形场,并具有切割速度和对象实例的一般性。然后,我们证明可以通过利用模拟器的可不同性来有效地执行贝叶斯推论,从而在无衍生方法的一小部分中估算数百个参数的后频。接下来,我们说明模拟中的控制参数可以优化以通过横向切片运动最小化切割力。最后,我们在装有切片刀的真实机器人臂上进行实验,以从力测量中推断模拟参数。通过优化刀的切片运动,我们在果实切割方案上表明,与垂直切割运动相比,平均刀力可以减少40%以上。我们在项目网站上发布代码和其他材料,网址为https://diff-cutting-sim.github.io。

Robotic cutting of soft materials is critical for applications such as food processing, household automation, and surgical manipulation. As in other areas of robotics, simulators can facilitate controller verification, policy learning, and dataset generation. Moreover, differentiable simulators can enable gradient-based optimization, which is invaluable for calibrating simulation parameters and optimizing controllers. In this work, we present DiSECt: the first differentiable simulator for cutting soft materials. The simulator augments the finite element method (FEM) with a continuous contact model based on signed distance fields (SDF), as well as a continuous damage model that inserts springs on opposite sides of the cutting plane and allows them to weaken until zero stiffness, enabling crack formation. Through various experiments, we evaluate the performance of the simulator. We first show that the simulator can be calibrated to match resultant forces and deformation fields from a state-of-the-art commercial solver and real-world cutting datasets, with generality across cutting velocities and object instances. We then show that Bayesian inference can be performed efficiently by leveraging the differentiability of the simulator, estimating posteriors over hundreds of parameters in a fraction of the time of derivative-free methods. Next, we illustrate that control parameters in the simulation can be optimized to minimize cutting forces via lateral slicing motions. Finally, we conduct experiments on a real robot arm equipped with a slicing knife to infer simulation parameters from force measurements. By optimizing the slicing motion of the knife, we show on fruit cutting scenarios that the average knife force can be reduced by more than 40% compared to a vertical cutting motion. We publish code and additional materials on our project website at https://diff-cutting-sim.github.io.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源