论文标题

aTTRI-VAE:具有变异自动编码器的医学图像的基于属性的可解释表示

Attri-VAE: attribute-based interpretable representations of medical images with variational autoencoders

论文作者

Cetin, Irem, Stephens, Maialen, Camara, Oscar, Ballester, Miguel Angel Gonzalez

论文摘要

深度学习(DL)的方法本质上被视为模型的一部分,才能更好地了解基于临床和成像的属性与DL结果的关系,从而促进它们在医疗决策背后推理中的使用。用变异自动编码器(VAE)构建的潜在空间表示不确保个人控制数据属性。基于属性的方法在基准数据中针对经典计算机视觉任务的文献中提出了属性分解。在本文中,我们提出了一种vae方法,即属性,其中包括一个属性的正则化项,将临床和医学成像属性与生成的潜在空间中的不同正则化维度相关联,从而实现了对属性的更好解释的解释。此外,生成的注意图解释了正规化潜在空间尺寸中编码的属性。我们使用Attri-VAE方法分析了具有临床,心脏形态和放射线学属性的健康和心肌梗死患者。拟议的模型在重建忠诚度,解除性和解释性之间提供了一个很好的权衡,根据几种定量指标,表现优于最先进的VAE方法。所得的潜在空间允许在两个不同的输入样本或沿特定属性维度之间的轨迹中生成逼真的合成数据,以更好地解释不同心脏条件之间的变化。

Deep learning (DL) methods where interpretability is intrinsically considered as part of the model are required to better understand the relationship of clinical and imaging-based attributes with DL outcomes, thus facilitating their use in the reasoning behind medical decisions. Latent space representations built with variational autoencoders (VAE) do not ensure individual control of data attributes. Attribute-based methods enforcing attribute disentanglement have been proposed in the literature for classical computer vision tasks in benchmark data. In this paper, we propose a VAE approach, the Attri-VAE, that includes an attribute regularization term to associate clinical and medical imaging attributes with different regularized dimensions in the generated latent space, enabling a better-disentangled interpretation of the attributes. Furthermore, the generated attention maps explained the attribute encoding in the regularized latent space dimensions. Using the Attri-VAE approach we analyzed healthy and myocardial infarction patients with clinical, cardiac morphology, and radiomics attributes. The proposed model provided an excellent trade-off between reconstruction fidelity, disentanglement, and interpretability, outperforming state-of-the-art VAE approaches according to several quantitative metrics. The resulting latent space allowed the generation of realistic synthetic data in the trajectory between two distinct input samples or along a specific attribute dimension to better interpret changes between different cardiac conditions.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源